
Infer Implicit Contexts in Real-time Online-to-Offline
Recommendation

Xichen Ding1, Jie Tang2, Tracy Liu2, Cheng Xu1, Yaping Zhang1, Feng Shi1, Qixia Jiang1, Dan Shen1

1 Koubei, Alibaba Group, Beijing, China
2 Tsinghua University, Beijing, China

{xichen.dxc,haoze.xc,yaping.zyp,sam.sf,qixia.jqx,dan.sd}@alibaba-inc.com,{jietang,liuxiao}@tsinghua.edu.cn

ABSTRACT
Understanding users’ context is essential for successful recommen-
dations, especially for Online-to-Offline (O2O) recommendation,
such as Yelp, Groupon, and Koubei1. Different from traditional rec-
ommendation where individual preference is mostly static, O2O
recommendation should be dynamic to capture variation of users’
purposes across time and location. However, precisely inferring
users’ real-time contexts information, especially those implicit ones,
is extremely difficult, and it is a central challenge for O2O rec-
ommendation. In this paper, we propose a new approach, called
Mixture Attentional Constrained Denoise AutoEncoder (MACDAE),
to infer implicit contexts and consequently, to improve the quality
of real-time O2O recommendation. In MACDAE, we first leverage
the interaction among users, items, and explicit contexts to infer
users’ implicit contexts, then combine the learned implicit-context
representation into an end-to-end model to make the recommenda-
tion. MACDAE works quite well in the real system. We conducted
both offline and online evaluations of the proposed approach. Exper-
iments on several real-world datasets (Yelp, Dianping, and Koubei)
show our approach could achieve significant improvements over
state-of-the-arts. Furthermore, online A/B test suggests a 2.9% in-
crease for click-through rate and 5.6% improvement for conversion
rate in real-world traffic. Our model has been deployed in the prod-
uct of “Guess You Like” recommendation in Koubei.

CCS CONCEPTS
• Information systems → Recommender systems; Data min-
ing; • Computing methodologies→ Neural networks.

KEYWORDS
online-to-offline recommendation,implicit context,attention

ACM Reference Format:
Xichen Ding1, Jie Tang2, Tracy Liu2, Cheng Xu1, Yaping Zhang1, Feng Shi1,
Qixia Jiang1, Dan Shen1. 2019. Infer Implicit Contexts in Real-timeOnline-to-
Offline Recommendation. In The 25th ACMSIGKDDConference on Knowledge

1www.koubei.com, Alibaba’s local service company.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330716

Discovery and Data Mining (KDD ’19), August 4–8, 2019, Anchorage, AK, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3292500.3330716

1 INTRODUCTION
Online-to-Offline (O2O) services, which provide on-demand door-
to-door services, have become prevalent in recent years. For exam-
ple, local business service platforms such as Yelp, Groupon, Dian-
ping, and Koubei, allow users to order products and services online,
and receive the products and services offline. Koubei.com belongs
to Alibaba’s local service company. It serves tens of millions of
users everyday by bringing local businesses online and providing
various local services to customers, including recommendation of
restaurants, local businesses, coupons, etc. Users can also place the
order through Koubei mobile app in advance before they get to
physical place (e.g., the restaurant) and then complete the trans-
action later. Compared with other e-commence recommendation,
O2O recommendation has several unique characteristics. First, the
objective of O2O recommendation is to provide customers real-time
recommendation to satisfy their dynamic needs. This requires us to
precisely capture customers’ dynamic contexts, e.g. their location,
time, and status (alone or with friends). Though certain contexts
such as weekday, time, location, are relatively easy to obtain, other
contexts, which are usually implicit, are difficult to infer. For ex-
ample, users’ purposes (e.g., whether they are looking for foods or
activities), and status (alone or with friends). Figure 1 illustrates
one example extracted from our data. At a weekday 8:00 am, users
may be interested in coupons for breakfast close to their company;
around 1:00 pm, they may want to search for deals in a dine-in
restaurant; at 4:00 pm, users may want to find a place for afternoon
tea. After going back home in the evening, they may switch to
search for dinner options and for recreational activities after dinner
such as spa and salon. The implicit contexts behind each scenario
have multiple dimensions. For example, in the morning the implicit
context is to have quick breakfast alone in a cheap restaurant; and
for lunch it is to find a place in medium-high price range for group
of colleagues. In the afternoon, it changes to find a quite place for
discussion,e.g., one-on-one discussion with the manager. In the
evening, it is to find restaurants good for family with kids.

Moreover, users’ online behaviors at time t may be strongly
influenced by other offline contexts. As the example in Figure 1
shows, when using Koubei’s local business recommendation, users
may be interested in items in both current context, representing
their real-time dynamic needs, and future contexts, signaling pe-
riodical or personal preference. For instance, at 1 pm, a customer
at work may be interested in both coupons for lunch now, and
those for future activities (e.g. dinner for anniversary two days

https://doi.org/10.1145/3292500.3330716
https://doi.org/10.1145/3292500.3330716


KDD ’19, August 4–8, 2019, Anchorage, AK, USA Ding et al.

Time: 1:00 pm Time: 8:00 am  Time: 4:00 pm  Time: 7:00 pm 

Purposes: Quick breakfast,
e.g. coffees, donuts, etc. 
Social Status: Alone; 
Price Preference:Low
Medium; 
 
 
 

Purposes: Dinein restaurants
for lunch; 
Social Status: Group of
colleagues; 
Price Preference: Medium
High; 
Others: Good for team
building and discussion; 

Purposes: Coupons for dinner,
and recreational activities
afterward, e.g.spa, salon; 
Social Status: With family; 
Price Preference: Medium
High; 
Others: Good for kids; 
 

Purposes: Snacks/drinks or
afternoon tea; 
Social Status: OneonOne
discussion with manager;
Price Preference: Medium; 
Others: Quite & private; 
 
 

Online Interaction

Offline Consumption

Implicit Context
Explicit Context Location: Company Location: Company Location: Company Location: Home

Figure 1: The illustration of implicit contexts in Online-to-Offline recommendation

later). In Koubei’s “Guess You Like” recommendation, our anal-
ysis shows that 20.8% users click on variety of different service
providers, including restaurants, gym, spa, etc.

In summary, the fundamental challenge for O2O recommenda-
tion, is how to infer users’ contexts and how to make accurate
recommendations based on the context. To tackle the problem, we
first infer users’ implicit multi-contexts from observational data,
including the interactions among users, items, and the explicit
contexts. This step is also called pre-training. Let latent variables
[X1,X2,X3, ...,Xn ] denote one real-time context, where each vari-
able represents an attribute and their combination describes the con-
text. For example,X1 denotes users’ purposes,X2 denotes the social
status, X3 denotes price preference, etc. The implicit multi-contexts
can be represented as Ci . We propose a novel approach, called
Mixture Attentional Constrained Denoise AutoEncoder (MACDAE),
to learn the implicit multi-contexts by using generative models.
Assuming that there are K multiple implicit contexts, we use Cik
to denote the kth contextual component we want to infer from the
observational data. We further combine the learned implicit context
representation with original input and feed them to downstream su-
pervised learning models, which learn score on the < U , I ,Ce ,Ci >
(User, Item, Explicit Contexts, Implicit Contexts) tuple. We compare
several generative models in the pre-training stage to infer implicit
context, including Denoise AutoEncoder (DAE) [19], Variational
AutoEncoder(VAE) [12], and find our proposed model MACDAE
achieves the best performance for inferring implicit contexts. We
adopt multi-head structure to represent multiple contextual com-
ponents, in which each head represents one latent contextual com-
ponent. Furthermore, the importance of each component is learned
by attention mechanism. To avoid the problem that different heads

learn identical contextual representation, we further apply con-
straints on the objective function of our generative models.

To summarize, our contributions include:
• Implicit Context Modeling: We take the first attempt to
infer users’ implicit context from observational data and
model implicit multi-contexts in the Online-to-Offline (O2O)
recommendation.

• Context-based Recommendation: Based on the learned
implicit context representations, we present an effective rec-
ommendation model using multi-head attentions.

• High Performance in both Offline and Online Evalu-
ations. We conduct both offline and online evaluations to
the proposed approach. Experiments on several real-world
datasets show our approach achieves significant improve-
ments over state-of-the-arts. Online A/B test shows 2.9%
lift for click-through rate and 5.6% lift for conversion rate
in real-world traffic. Our model has been deployed in the
product of “Guess You Like” recommendation in Koubei.

The rest of the paper is organized as follows: Section 2 provides
an overview of our context-based recommendation system. Section
3 describes details of our proposed model and Section 4 contains
results from offline experiments, online A/B test and analysis. We
discuss related work in Section 5 and conclude in Section 6. Addi-
tional information for reproducibility is provided in supplements.

2 SYSTEM OVERVIEW
Figure 2 presents the overview of our context-based recommenda-
tion system. Users submit a page view (PV) request to the recom-
mendation system. The system first query a set of candidates from



Infer Implicit Contexts in Real-time Online-to-Offline Recommendation KDD ’19, August 4–8, 2019, Anchorage, AK, USA

User

Location-

Based
U2I/I2I

Real-time

Behaviors

Historical 

Behaviors 

Match

Rank

Page View 

Request 

Scorer

Prediction

Implicit Context

Inference 

Query

Item List

Feature 

Service 

Page View 

Result 

User Feature 

Realtime Feature

Context Feature 

Item 

Storage 

Ranker

Popularity Extra 

Item Feature 

Figure 2: System Overview of Context-Based Recommenda-
tion in Koubei

storage. There are multiple match strategies, including location-
based (retrieve all the items nearby users’ current location or ob-
jective location), U2I/I2I (user-to-item and item-to-item and other
relation based), users’ real-time behaviors and historical behaviors,
popularity based and others. Second, in the rank step, feature ser-
vice generates features of users, explicit contexts, and real-time
features. These features and item features are fed to the scorer.
Simultaneously, users’ implicit contexts are inferred from the in-
teraction among users, items and explicit contexts. And in the
prediction step, our model predicts a score for each candidate. Fi-
nally, candidates are sorted by prediction scores in the ranker. In
the following section, we will focus our discussion on the scorer
part of the system, especially the implicit context inference step.

3 PROPOSED MODEL
3.1 Model Intuition
There are several approaches to model the implicit multi-contexts in
Online-to-Offline recommendation. One straightforward approach
is to enumerate all the possible combination of factors that influ-
ence users’ behaviors, such as weekday, time interval, location,
social status and purposes. This approach works when the number
of combinations is small, such as finding restaurants for dinner
(purpose) in the evening (time interval) near home (location) which
is good for family members including kids (social status). However,
in practice, there are often too many scenarios that the number of
combinations will explode with the growing number of factors.

This leads us to another approach, i.e., inferring users’ implicit
context as hidden state representation from the observational data,
including user, item and explicit context. In addition, the hidden
state representation is not a single static one and should reflect
the multi-contexts characteristic in the complex Online-to-Offline
recommendation. We will discuss several instances of this approach
in the model description section.

3.2 Problem Formulation
We formulate our implicit multi-contexts modeling problem for rec-
ommendation as follows: Let Ci denote the implicit multi-contexts

representation. Basically, we want to infer implicit contexts from
the three-way interaction of tuple < U , I ,Ce > (User, Item, Explicit
Context). Assuming that there are K different contextual compo-
nents in the current implicit context. We use Cik to denote the kth
contextual component we want to infer, which is a dk dimension
vector. The final implicit contextual representation is:

Ci =
∑
K

µkCik (1)

Cik = дk (U , I ,Ce ) (2)

yui = f (U , I ,Ce ,Ci ) (3)
The µk denotes the weight importance of the kth component,

with
∑
K µk = 1. The function дk (.) denotes the latent representa-

tion function. And the complete recommendation model predicts a
score yui for user and each item in the candidates.

We apply different generative models to instantiate дk (.), includ-
ing Denoise AutoEncoder (DAE) [19], Variational AutoEncoder
(VAE) [12], and our proposed model Mixture Attentional Con-
strained Denoise AutoEncoder (MACDAE). In Section 4, we will
compare these models in details.

3.3 Model Description
For recommendation with implicit feedback, given a set of usersU
and a set of items I , we aim to predict a scoreyui for each pair of user
and item in the list of candidates and then recommend the ranked
list of items Ij to userUi . To model the implicit multi-contexts in
recommendation, we propose a unified framework, which consists
of two steps: First, we infer implicit context representationCi from
interaction data of < U , I ,Ce > (User, Item, Explicit Context) in the
pre-training task. Second, we include the extracted implicit context
representation Ci as additional features and combine with original
input and predict the score on the tuple < U , I ,Ce ,Ci > (User, Item,
Explicit Context, Implicit Context).

Implicit Context Inference inPre-training. In the pre-training
stage, the pre-training dataset comes from positive user-item inter-
action data, such as clicks and buys. We want to find some latent
patterns of implicit context from these observational data. Pre-
training method is widely used in many deep-learning tasks such
as NLP and Computer Vision. In NLP, language models are pre-
trained over large corpus to learn good embedding representation
of words and sentences [7]. In computer vision, researchers find
itâĂŹs beneficial to pre-train image with large dataset and fine-
tune the last few layers in application specific tasks [6]. There are
two main approaches to apply the pre-trained representation to the
following supervised tasks: feature-based approach and fine-tuning
approach [7]. Feature-based approach will include the representa-
tion as additional features and fine-tuning approach tunes the same
model architecture in the downstream supervised learning tasks.

Inspired by previous work, we also use pre-training to learn
implicit multi-contexts representation from positive user item in-
teraction data. In our model, the implicit context is inferred from
(User, Item and Explicit Context) tuple. We denote x as the input
to pre-training model architecture, д(x) as learned implicit context
representation. The input x consists of user embedding eu , item
embedding ei , their two-way interaction eu ◦ ei represented by



KDD ’19, August 4–8, 2019, Anchorage, AK, USA Ding et al.

Z1 Zk

Z1 mean Z1 log Var Zk log VarZk mean

Item Feature User-Item Interaction

mask(X)

h

X' X'

Z

X

X'

h

mask(X)

DAE VAE MACDAE

User Feature Item Feature User-Item Interaction

X User Feature

Head h1 Head h2 Head hk

Feature 2 Feature nFeature 1

X

Head h1 Head h2 Head hk

Feature 1 Feature 2 Feature n

dot product
attention

mu_1*h1 mu_k*hkmu_2*h2

User Feature Item Feature User-Item Interaction

mu_1 mu_2 mu_k

Figure 3: The model architecture of DAE, VAE and MACDAE.

their element-wise product, and other side information of users
and items eside .

x = concat(eu , ei , eu ◦ ei , eside ) (4)

In the downstream supervised learning tasks, we adopt different
strategies for different datasets, including feature-based approach
and fine-tuning approach. For feature-based approach, we include
the pre-trained representation д(x) in the deep model architecture,
initialize д(x) with parameters from pre-training task and freeze
them during supervised training. For fine-tuning approach we allow
the fine tuning of pre-trained parameters of д(x).

Multi-Head DAE/VAE. Usually, the implicit contexts have mul-
tiple components, which cannot be described by a single static
representation. We propose to use a multi-head structure of rep-
resentation h = д(x) to represent the multiple implicit contextual
components, where x is the input and д(x) is the learning function.
The implicit contextual representation h is the combination of mul-
tiple contextual components. As illustrated in Figure 3, the hidden
layer h is the concatenation of K multiple heads hk , each repre-
senting one contextual component Cik . Each head (hidden state)
hk only captures partial contextual information from subspaces
of the original input x . We denote K as the assumed number of
contextual components, and use hk to represent the kth latent hid-
den contextual component Cik . For the generative model, Denoise
AutoEncoder(DAE) [19] and Variational AutoEncoder(VAE) [12],
we simply concatenate multiple heads as the final implicit context
representation.

The classic Auto-Encoder[3] model is a one-hidden layer neural
network, which first maps an input vector x to a latent represen-
tation h and then reconstruct the input as x ′ . The objective is to
minimize the squared loss between the original input x and the
reconstruction x

′ . The Denoise AutoEncoder[19] further masks
out partial information of input with probability p and gets the
corrupted version of input as x̃ . x̃ = mask(x). Then the network
aims to encode the corrupted input x̃ as hidden state and to recon-
struct the original input x from the hidden state. As illustrated in
Figure 3, for the multi-head version of DAE, the hidden state h is

concatenation of K components. N denotes the total number of
examples.

h = h1 ⊕ h2 ⊕ ... ⊕ hK , k ∈ K (5)
hk = σ (Wk x̃ + bk ), k ∈ K (6)

x
′
= σ (W ′

h + b
′) (7)

Lr econstruct =
1
N

∑
N

| |x − x
′ | |2 (8)

Variational AutoEncoder (VAE) [12] is another very important
generative deep learning model, which assumes that the data distri-
bution of input x is controlled by a set of latent random variables
z.

p(x) =
∫

pθ (x |z)p(z)dz (9)

To optimize p(x), VAE assumes that the latent variable comes
from a simple distribution, usually N (0, I ) and the conditional prob-
ability pθ (x |z) is also a Gaussian distribution N (f (z;θ ),σ 2× I )with
mean f (z;θ ) and covariance σ 2 × I . An encoder (MLP) learns the
mean and variance of data distribution and then a decoder recon-
structs the input. In the encoder part, since the posterior of pθ (z |x)
is intractable, VAE use qϕ (z |x) to approximate the original pθ (z |x).
Consequently, the overall structure of VAE becomes an encoder
qϕ (z |x) and a decoder pθ (x |z). The objective function also consists
of two parts: the reconstruction part and the Kullback-Leibler di-
vergence DKL between qϕ (z |x) and pθ (z). As shown in Figure 3,
we also concatenate the state representation of each head zk to get
the hidden representation z = z1 ⊕ z2 ⊕ ... ⊕ zK , and reconstructs
the original input from z. For the following supervised training
step, we feed the concatenation of mean state vector of each head
z̄ = z̄1 ⊕ z̄2 ⊕ ... ⊕ ¯zK to the prediction model.

z = z1 ⊕ z2 ⊕ ... ⊕ zK , k ∈ K (10)
zk ∼ N (µk (x), Σk (x)), k ∈ K (11)

x
′
= σ (W ′

z + b
′) (12)



Infer Implicit Contexts in Real-time Online-to-Offline Recommendation KDD ’19, August 4–8, 2019, Anchorage, AK, USA

MixtureAttentionalConstrainedDenoiseAutoEncoder.We
propose a new model: Mixture Attentional Constrained Denoise
AutoEncoder (MACDAE) (Cf. Figure 3) to infer the multiple implicit
contexts. Different from the standard Denoise AutoEncoder(DAE)
model, in MACDAE, the hidden layer h is the concatenation of K
weighted multiple heads hk , with each representing one contextual
component Cik . The basic idea is that different implicit contextual
components contribute differently to the final representation. The
multi-head DAE model can be considered as a special case of the
weighted concatenation where different components contribute
equal weights. The weight of each component in MACDAE can be
learned using the attention mechanism.

h = µ1h1 ⊕ µ2h2 ⊕ ... ⊕ µKhK , k ∈ K (13)
The final implicit multi-contexts representation h is the con-

catenation of weighted heads hk . The weight µk is learned by an
attentional function, which maps the uncorrupted version of input
x to the kth hidden representation hk . In the implementation, we
use the dot-product (multiplicative) attention. The (Q,K ,V ) tuple of
the attention function is that: the queryQ is represented by (Wax)T
and the keys and values are multiple hidden components hk . The
original input x has the dimension of dm and after multiplication
with matrixWa (shape [dk ,dm ]) the dimension ofWax becomes dk ,
which has the same dimension as that of the hidden component
hk . The dimension is also equal to total hidden state dimension dh
divided by number of heads K , dk = dh/K . The multiple hidden
states hk are packed into matrix H (shape [K ,dk ]) and the attention
function becomes as below. The reconstruction layer is the same as
the standard DAE model.

Q = (Wax)T (14)

[µ1, µ2, ..., µK ] = so f tmax(QHT ),k ∈ K (15)
Constraint Definition. The loss function of the proposed mix-

ture attentional constrained model uses the squared loss between
the original input x and the reconstruction x̃

′ , which is similar to
the standard DAE. As we stated previously, one downside of multi-
head attention training is the homogeneity between each pair of
heads, which suggests that they tend to learn identical representa-
tions given the same input x and learning steps. Empirically, the
average cosine similarity between multiple heads can be as high
as 0.788, as illustrated in Figure 7, from experiments on the Koubei
dataset.

Another idea is to apply constraint on the cosine similarity be-
tween each pair of heads ofmultiple contextual components. Denote
hi and hj as the ith and jth heads (hidden representation), and the
constraint is formulated as:

cos(hi ,hj ) ≤ ε,∀i, j ∈ K (16)
where ε is a hyperparameter, which is within the range ε < 1. Since
two identical vectors with 0 degree angel has cosine similarity as
cos 0 = 1. ε denotes the maximum cosine similarity we set on each
pair of K components, e.g. ε = 0.75. We also apply other distance
measure, e.g. the euclidean distance between hi and hj , and find
that using cosine distance outperforms the euclidean distance in
our experiments.

Now the problem becomes a constrained optimization problem.
We want to minimize the reconstruction loss Lr econstruct subject
to the total C2

K constraints on multiple heads.

min L = Lr econstruct (17)

s .t . cos(hi ,hj ) − ε ≤ 0,∀i, j ∈ K (18)

To apply the constraint on the parameters of neural networks,
we transform the formulation by adding penalty term to the original
objective function and get the final objective function Lnew . λ is a
hyper-parameter of the penalty cost we set on the constraint term
of similarity.

min Lnew = Lr econstruct +
∑
i, j ∈K

λ(cos(hi ,hj ) − ε) (19)

User Sequential Behavior Modeling. For real-world recom-
mendation, there are plenty of user behavior information in logs,
such as query, click, purchase, and etc. In Koubei’s recommenda-
tion, we use a RNN network to model users’ sequential behaviors
data, with attention mechanism applied to the hidden state of each
time step hj . We use J to denote the total number of steps of users’
sequential behaviors. Ce denotes the explicit contextual informa-
tion when user’s certain behavior actually happens. Let’s denote
ai j as attentional weights that candidate item Ii , denoted as xitemi ,
places on jth users’ sequential behavior hj , which is conditional
on the context information Ce . The final representation of user’s
sequential behavior given current item Ii , denoted by xattni , is the
weighted sum of the hidden state of RNN as xattni =

∑
J ai j × hj .

The fixed-length encoding vector xattni of users’ sequential be-
havior data under current context Ce is also combined with the
original input x , implicit context modeling д(x), and fed to the
first layer input of the deep part in supervised learning model
x0 = concat(x ,д(x),xattni ).

ai j = fattn (xitemi ,hj ,Ce ) (20)

Learning and Updating of the Two-stage Framework. Our
proposed framework consists of pre-training stage and downstream
supervised learning stage. We denote N as the duration of pre-
training dataset, e.g. N consecutive days of positive user-item inter-
action data.M denotes the duration of training dataset, including
both impressions and clicks/buys data. The advantage of unsuper-
vised pre-training is that it allows much larger pre-training dataset
than the supervised learning dataset, which means N >> M . The
pre-training model is updated on a weekly basis. It does not need to
be updated frequently or by online learning, which saves abundant
of computing resources. As for the downstream supervised learning
task, since fine-tuning and feature-based approaches are usually
faster than learning everything from scratch, we are updating the
prediction model once a day after midnight.

4 EXPERIMENT
We conduct both offline and online evaluations to the proposed
approach. In this section, we first introduce the offline evaluation
on three different datasets, and then use the online A/B test to
evaluate our proposed model.



KDD ’19, August 4–8, 2019, Anchorage, AK, USA Ding et al.

Table 1: Statistics of Yelp, Dianping, Koubei Datasets

Dataset User Item Interaction
Yelp 24.8K 130.7K 1.2M

Dianping 8.8K 14.1K 121.5K
Koubei* 4.0M 1.1M 43.4M

*Koubei offline dataset is randomly sampled from larger production dataset.

4.1 Experiments Setup
Dataset. We choose three datasets to evaluate our models: Yelp
Business dataset2, Dianping dataset3[15] and Koubei dataset. Table
1 presents the statistics for each dataset. M denotes million and K
denotes thousand.

• Yelp Dataset The Yelp dataset (Yelp Dataset Challenge) con-
tains users’ review data. It is publicly available and widely
used in top-N recommendation evaluation. User profile and
business attribute information are also provided. Following
[10, 14], we convert the explicit review data to implicit feed-
back data. Reviews with four or five stars are rated as 1 and
the others are rated as 0. Detailed train/test split methods
are provided in supplements.

• Dianping Dataset Dianping.com is one of the largest busi-
ness review websites. The dataset we use contains customer
review data (similar to Yelp Dataset). We also convert review
to implicit feedback and prepare the dataset the same way
as Yelp dataset.

• Koubei Dataset Koubei.com belongs to the local service
company of Alibaba. The goal of the recommendation is to
predict user’s click-through rate (CTR) and conversion rate
(CVR) of candidate items. To evaluate our implicit contextual
representation models on this large real-world commercial
dataset, we collect 30 consecutive days of positive instance
(user click) for pre-training and use 14 days of customer
logs data, both positive (user click) and negative (impression
without click), for training, and use the data in the next day
for testing. For offline evaluation, we randomly sample a
subset of a larger production dataset of CTR.

Evaluation Metrics. For the first two datasets, i.e., Yelp and
Dianping, we use Normalized Discounted Cumulative Gain at rank
K (NDCG@K ) as metrics for model evaluation, which is widely
used in top-N recommendation with implicit feedback [10]. For
negative sampling of Yelp and Dianping, we randomly sample 50
negative samples for 1 positive sample and then rank the list. The
ranked list is evaluated atK = 5, 10 and the final results are averaged
across all users. For the Koubei dataset, we have more information,
so we use the Area Under the ROC curve(AUC) of the user’s CTR
as the metric [14], which measures the probability that the model
ranks randomly sampled positive instance higher than negative
instance.

4.2 Comparison Methods
We conduct pre-training and compare three models, including DAE,
VAE and our proposedMACDAE. After we get the representation of
2https://www.kaggle.com/yelp-dataset/yelp-dataset
3http://shichuan.org/HIN_dataset.html

implicit context, we adopt different strategies for different datasets.
For Koubei dataset, we combine the latent features h = д(x) (hidden
state) with the original input x as additional features, and feed
(x +д(x)) to the baseline model. Then the model is trained with the
parameters of д(x) frozen. As for Yelp and Dianping dataset, we just
use the latent features д(x) directly as input and feed to the baseline
model. Since the latent contextual features of Dianping and Yelp are
concatenation of embeddings, the final model is fine-tuned and the
parameters of the generative model д(x) is not frozen. We choose
the Wide&Deep[4] model as the baseline model, and compare other
models below.

• Wide&Deep (BaseModel) : The baselinemodelWide&Deep[4]
combines the wide linear model with deep neural networks.
The outputs of the wide part and the deep part are combined
using weighted sum and then the model applies a sigmoid
function to the final output.

• DeepFM: DeepFM[8]model combines two components, Deep
Neural Network component and Factorization Machine (FM)
component. The FM component models the second-order
interaction, compared to the linear part in Wide&Deep.

• NFM: Neural Factorization Machines (NFM)[9] model com-
bines the linearity of Factorization Machine (FM) to model
second-order interaction with the non-linearity of neural
network to model higher-order feature interactions. A bi-
interaction pooling component, which models the interac-
tion among sparse features, is used as hidden layer in the
deep structure.

• BaseModel+DAE: The pre-trainingmodel uses amulti-head
version of Denoise AutoEncoder(DAE)[19]. And the hidden
state h is a concatenation of K different heads (hidden state)
as illustrated in Figure 3. Finally, we feed the hidden state
learned by DAE to the baseline (Wide&Deep) model.

• BaseModel+VAE: The pre-trainingmodel uses amulti-head
version of Variational AutoEncoder(VAE)[12] as shown in
Figure 3. For the downstream training step, we feed the
concatenation of mean state vector of each head z̄k to the
baseline model.

• BaseModel+MACDAE: The pre-training model uses our
proposed Mixture Attentional Constrained Denoise AutoEn-
coder(MACDAE) as the objective. We use the weighted con-
catenate of multiple heads as hidden state h = µ1h1 ⊕ µ2h2 ⊕
... ⊕ µKhK and feed it to the baseline model. For comparison
purpose, we implement MACDAE model in three configura-
tions with different multi-head number K, K = [4, 8, 16].

4.3 Results from Pre-training Dataset
We have compared DAE, VAE and MACDAE models on three pre-
training datasets. The illustration of latent representations learned
from the pre-training datasets are presented in Figure 4. The illus-
tration is shown based on 8K samples from Yelp dataset, 8K samples
from Dianping dataset and 25.6K samples from Koubei dataset. We
use t-SNE[17] to map the latent representations h into 2D space.
We also cluster the latent representations and set the total cluster
number of Yelp and Dianping to 8 and Koubei to 15. Our illustration



Infer Implicit Contexts in Real-time Online-to-Offline Recommendation KDD ’19, August 4–8, 2019, Anchorage, AK, USA

Table 2: Results on evaluation of three datasets."*" indicates best performing model and "#" indicates best baseline model.

Model Yelp Dianping Koubei
NDCG@5 NDCG@10 NDCG@5 NDCG@10 AUC

Base(Wide&Deep) 0.3774 0.4272 0.4301 0.4691 0.6754
DeepFM #0.3893 #0.4414 #0.4564 0.4854 0.6660
NFM 0.3813 0.4242 0.4527 #0.4996 #0.6881

Base+DAE 0.4159 0.4639 0.4507 0.4954 0.6810
Base+VAE 0.4192 0.4661 0.4517 0.4985 0.6790

Base+MACDAE(K=4) *0.4410 *0.4886 0.4569 0.5024 0.6902
Base+MACDAE(K=8) 0.4136 0.4650 *0.4614 *0.5050 0.6936
Base+MACDAE(K=16) 0.4058 0.4521 0.4470 0.4960 *0.6954

shows that the VAE extracts the latent representations as high-
variance compared to DAE and MACDAE. The detailed analysis of
data distribution will be discussed in the following section.

4.4 Offline Model Evaluation Results
We have conducted extensive experiments on the Yelp, Dianping
and Koubei datasets. The Yelp and Dianping datasets are evaluated
by NDCG@5 and NDCG@10. The Koubei Dataset of click through
rate(CTR) is evaluated by AUC performance. Table 2 reports re-
sults of model comparison. First, by comparing three fine-tuned
baseline models with features from pre-trained models (Base+DAE,
Base+VAE, Base+MACDAE) to baseline models without any pre-
training, we find that pre-training step and implicit context repre-
sentations are very effective. For Yelp dataset, compared toWide&Deep
model without pretraining, the pre-training on DAE, VAE and
our proposed MACDAE models gain 3.9%, 4.2%, 6.4% absolute im-
provement on NDCG@5 and 3.7%, 3.9%, 6.1% on NDCG@10 respec-
tively. For Koubei CTR dataset, the pre-training step also achieves
0.6%, 0.4%, 2.0% absolute improvement on AUC score compared to
the baseline model without pretraining. The experiment results are
consistent with our hypothesis that adding implicit multi-contexts
representations would be helpful for improving the overall perfor-
mance. Secondly, by comparing different pre-training objectives,
our proposed model MACDAE outperforms others, multi-head
versions of DAE and VAE. Since multi-head DAE simply uses con-
catenation of multiple heads, in which all heads contribute equal
weights, it is a special case of the general model MACDAE. The
attentional weight of multiple components are also effective com-
pared to simple concatenation with equal weights. Moreover, the
hyperparameter of multi-head number K also influences the per-
formance, and we will discuss the effect of multi-head number K
in the following section. Thirdly, the results show the effectiveness
of adding two-way interaction of user and item features to the
input x of pre-training model MACDAE. Comparing our proposed
model Base+MACDAE with DeepFM/NFM, even if the baseline
model (Wide&Deep) alone performs worse than the DeepFM/NFM
due to the loss of high-order feature interaction, our proposed
Base+MACDAE still beats these two models. The reason is that the
input to the pre-training model MACDAE also contains the fea-
tures of the two-way interaction between user and item embedding
eu ◦ ei , which is also fed to the baseline model.

Table 3: Online A/B Test Results of CTR/CVR in Koubei Rec-
ommendation.

Days CTR (%Lift) CVR (%Lift)
D1 +3.5% +7.0%
D2 +1.8% +6.4%
D3 +2.6% +7.0%
D4 +2.5% +6.3%
D5 +3.6% +2.6%
D6 +2.9% +4.7%
D7 +3.4% +5.3%

Average +2.9% +5.6%

4.5 Online A/B Test Results
After comparing the models on Koubei dataset offline, we conduct
online A/B test in real-world traffic and compare our proposed
model (Wide&Deep model with MACDAE pre-training) with the
baseline model (Wide&Deep model without pre-training). The daily
online results report an average 2.9% lift on click-through rate(CTR)
and 5.6% lift on conversion-rate(CVR) in Koubei recommendation.
The detailed results are reported in table 3. Online testing indicates
that model Base+MACDAE achieves great improvements over the
existing online models. More importantly, we have already de-
ployed our new model in production and served tens of millions of
customers in Koubei’s "Guess You Like" recommendation section
everyday.

4.6 Results from Data Mining Perspective of
Context in Recommendation

4.6.1 Distribution of LatentRepresentations LearnedbyGen-
erative Models. We conduct experiments to answer the question:
What is the data distribution of original input and the latent repre-
sentations learned by generative models like in recommendation
dataset? We compare examples of Koubei dataset with examples
of Yelp dataset. Koubei dataset consists of dense features and one-
hot encoded sparse features of users and items, and Yelp dataset
consists of embedding features learned by user and item id lookup.
The results are presented in Figure 5. We calculate the mean x̄
and variance σ 2 of feature values within each vector of example
and the results are then averaged across different samples. We
discuss several interesting findings here. First, for Koubei dataset,



KDD ’19, August 4–8, 2019, Anchorage, AK, USA Ding et al.

−75 −50 −25 0 25 50 75 100
−100

−50

0

50

100
Yelp DAE

−30 −20 −10 0 10 20 30 40 50

−20

0

20

40

60
Yelp VAE

−80 −60 −40 −20 0 20 40 60 80

−50

0

50

Yelp MACDAE

−75 −50 −25 0 25 50 75

−50

0

50

Dianping DAE

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60
Dianping VAE

−80 −60 −40 −20 0 20 40 60 80
−75

−50

−25

0

25

50

75

Dianping MACDAE

−100 −75 −50 −25 0 25 50 75 100
−100

−50

0

50

100
Koubei DAE

−40 −20 0 20 40

−40

−20

0

20

40

Koubei VAE

−100 −75 −50 −25 0 25 50 75 100
−100

−50

0

50

100
Koubei MacDAE

Figure 4: The illustration of the latent hidden states of implicit contexts extracted by models

input x DAE h VAE h MACDAE h

−0.10

−0.05

0.00

0.05

0.10

Koubei,Mean  x

input x DAE h VAE h MACDAE h
−0.05

0.00

0.05

0.10

0.15

0.̄0

0.0188
0.0018

0.1691

0.0018

Koubei,Variance σ̄

mean variance

DAE x DAE h VAE x VAE h MACDAE xMACDAE h

−0.04

−0.0̄

0.00

0.0̄

0.04

Yelp,Mean  x

DAE x DAE h VAE x VAE h MACDAE x MACDAE h

0.0

0.1

0.̄

0.3

0.4

0.5

0.0104 0.0001 0.0034

0.4653

0.0053 0.0001

Yelp,Variance σ̄

mean variance

Figure 5: Mean and Variance Distribution of Original Input
x and Hidden State h Learned by DAE, VAE, MACDAE

comparing the same input vector x with hidden state h learned
by different models, DAE model transforms the original input x to
hidden state h by increasing the mean of the features and reduc-
ing the variance. In contrast, VAE model transforms the input x
by reducing the mean and increasing the variance. This is aligned
with the illustration of a round-shaped embedding of VAE model
trained on Yelp dataset in Figure 4. MACDAE is similar to DAE
and further reduces the variance in hidden state representation.
Second, by comparing VAE model on two different datasets, we
find that for Koubei dataset, the hidden state h learned by VAE has
avд(h̄) = 0.0023,min(h̄) = −0.1015,max(h̄) = 0.0728,σ 2 = 0.1691,
which shows that the hidden state is not centered around h̄ = 0.0.
For the Yelp dataset which is learned from randomly initialized
embedding, the hidden state h has avд(h̄) = −0.0008,min(h̄) =
−0.0250,max(h̄) = 0.0241,σ 2 = 0.4653, which is centered around
h̄ = 0.0. Our conjecture is that the original input vector of Koubei
dataset consist of one-hot encoded features and dense features,
which is very sparse and not normally distributed.

K=1 K=2 K=4 K=80.35

0.40

0.45

0.50

0.55

0.60

0.4099 0.4104 0.4159
0.4041

0.4569 0.4572 0.4639
0.4530

0.4110

0.4410

0.4136

0.4584

0.4886

0.4650

NDCG@5 and NDCG@10 performance on Yelp Dataset
DAE NDCG@5
DAE NDCG@10
MACDAE NDCG@5
MACDAE NDCG@10

Figure 6: The performace of NDCG@5 and NDCG@10 on
Yelp dataset with different multi-head number K

4.6.2 Effect of Multi-Head Number K. We empirically evalu-
ate the impact of parameter multi-head number K, which represents
the assumed hidden state number of the implicit multi-contexts. To
highlight the influence of parameter K , we choose the Yelp dataset
and compare multi-head DAE model with our proposed Mixture
Attentional Constrained Denoise AutoEncoder (MACDAE) model
on different levels of K , K = [1, 2, 4, 8]. The performance of evalua-
tion metrics NDCG@5 and NDCG@10 are shown in Figure 6. The
hidden state dimension in Yelp dataset is [256], and K=4 achieves
the best performance of both DAE and MACDAE. For K=1, both
DAE and MACDAE become the same vanilla DAE model with sin-
gle hidden state. Furthermore, increasing head number K does not
always improve the metrics.

5 RELATEDWORK
Traditional context-aware recommendation systems use context
information as pre-filtering, post-filtering conditions and features
in the contextual modeling [1]. Methods such as Wide&Deep[4],



Infer Implicit Contexts in Real-time Online-to-Offline Recommendation KDD ’19, August 4–8, 2019, Anchorage, AK, USA

DeepFM[8] and NFM [9] only predict score on the < U , I ,Ce >
tuple(User, Item, Explicit Context) and neglect the implicit context.
Latent factor models including matrix factorization [13] and tensor
factorization [5], learn hidden factors of user, item, context and their
interaction, but only model single latent representation and neglect
the characteristic of multi-contexts in O2O recommendation.

Most of recent research on context-aware recommendation sys-
tems (CARS) focus on extension of Collaborative Filtering meth-
ods [21], Matrix Factorization or Tensor Factorization methods [5],
and Latent Factor models. For example, HyPLSA[2] is high order
factorization method that learns interaction among user, item and
context. Traditional latent factor models like LDA learns latent sub-
space from data, but it is time-consuming to train and can’t be easily
integrated with downstream tasks, such as deep neural networks.
Recently pre-training is widely used in NLP, e.g., ELMo[16] and
BERT[7] models are pre-trained on large corpus and achieve great
success in many tasks, e.g., question answering, etc. The building
block Transformer [18] uses multi-head attention to jointly attend
to information from different representation subspaces, which has
advantages over single head. We adopt similar multi-head structure
as Transformer to represent multiple implicit contextual compo-
nents while Transformer attend on tokens in sentences.

Attentive Contextual Denoising Autoencoder(ACDA) [11] model
extends idea of CDAE [20] and uses a single attentional layer to
apply a weighted arithmetic mean on features of the hidden layer
representation, which also considers the explicit contextual features.
The key difference between our proposed MACDAE and methods
mentioned above is that: CDAE and ACDA aim to learn latent
features that reflect user’s preferences over all N candidate items
at the same time and only consider the explicit contextual features.
MACDAE infers the implicit contextual representation from the
interaction between each pair of user, item and explicit context.

6 CONCLUSIONS
In this paper, we propose a unified framework to model users’ im-
plicit multi-contexts in Online-to-Offline (O2O) recommendation.
To infer the implicit contexts from observational data, we compare
multiple generative models with our proposed Mixture Attentional
Constrained Denoise AutoEncoder (MACDAE) model. Experiments
show thatMACDAE significantly outperforms several baseline mod-
els. Additionally, we conduct extensive analysis on the actual data
distribution of latent representations and gain insights on proper-
ties of different generative models. Online A/B test reports great
improvements on click-through rate (CTR) and conversion rate
(CVR), and we have deployed our model online in Koubei’s “Guess
You Like” recommendation and served tens of millions of users
everyday.

7 ACKNOWLEDGEMENTS
We thank algorithm-engineering teams of Koubei and Ant Financial
for their support on recommendation platform, feature service,
distributed machine learning platform and online model serving
system, which enable the successful deployment in production. Jie
Tang is supported by the NSFC for Distinguished Young Scholar
(61825602) and NSFC (61836013).

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2008. Context-aware Recom-

mender Systems. In Proceedings of the 2008 ACM Conference on Recommender
Systems (RecSys ’08). ACM, New York, NY, USA, 335–336. https://doi.org/10.
1145/1454008.1454068

[2] Robert W. Alan Said. 2009. A hybrid PLSA approach for warmer cold start in
folksonomy recommendation. Proceedings of the International Conference on
Recommender Systems (2009), 87–90.

[3] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. 2006. Greedy
Layer-wise Training of Deep Networks. In Proceedings of the 19th International
Conference on Neural Information Processing Systems (NIPS’06). MIT Press, Cam-
bridge, MA, USA, 153–160. http://dl.acm.org/citation.cfm?id=2976456.2976476

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. CoRR abs/1606.07792
(2016). arXiv:1606.07792 http://arxiv.org/abs/1606.07792

[5] Tiago Cunha, Carlos Soares, and André C.P.L.F. Carvalho. 2017. Metalearning
for Context-aware Filtering: Selection of Tensor Factorization Algorithms. In
Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys ’17).
ACM, New York, NY, USA, 14–22. https://doi.org/10.1145/3109859.3109899

[6] Jia Deng,Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. 2009. Imagenet:
A large-scale hierarchical image database. In In CVPR.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[8] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
CoRR abs/1703.04247 (2017). arXiv:1703.04247 http://arxiv.org/abs/1703.04247

[9] Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse
Predictive Analytics. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’17). ACM, New
York, NY, USA, 355–364. https://doi.org/10.1145/3077136.3080777

[10] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S. Yu. 2018. Leveraging Meta-
path Based Context for Top- N Recommendation with A Neural Co-Attention
Model. In Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery &#38; Data Mining (KDD ’18). ACM, New York, NY, USA, 1531–
1540. https://doi.org/10.1145/3219819.3219965

[11] Yogesh Jhamb, Travis Ebesu, and Yi Fang. 2018. Attentive Contextual Denoising
Autoencoder for Recommendation. In Proceedings of the 2018 ACM SIGIR Interna-
tional Conference on Theory of Information Retrieval (ICTIR ’18). ACM, New York,
NY, USA, 27–34. https://doi.org/10.1145/3234944.3234956

[12] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
ICLR abs/1312.6114v2 (2014). arXiv:1312.6114v2 https://arxiv.org/abs/1312.
6114v2

[13] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. MATRIX FACTORIZATION
TECHNIQUES FOR RECOMMENDER SYSTEMS.

[14] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature Inter-
actions for Recommender Systems. CoRR abs/1803.05170 (2018). arXiv:1803.05170
http://arxiv.org/abs/1803.05170

[15] Jian Liu, Chuan Shi, Binbin Hu, Shenghua Liu, and Philip S. Yu. 2017. Personalized
Ranking Recommendation via Integrating Multiple Feedbacks. In Advances in
Knowledge Discovery and Data Mining, Jinho Kim, Kyuseok Shim, Longbing
Cao, Jae-Gil Lee, Xuemin Lin, and Yang-Sae Moon (Eds.). Springer International
Publishing, Cham, 131–143.

[16] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proc. of NAACL.

[17] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. https://arxiv.org/pdf/1706.03762.pdf

[19] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. Extracting and Composing Robust Features with Denoising Autoencoders.
In Proceedings of the 25th International Conference on Machine Learning (ICML ’08).
ACM, New York, NY, USA, 1096–1103. https://doi.org/10.1145/1390156.1390294

[20] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collabora-
tive Denoising Auto-Encoders for Top-N Recommender Systems. In Proceedings
of the Ninth ACM International Conference onWeb Search and Data Mining (WSDM
’16). ACM, New York, NY, USA, 153–162. https://doi.org/10.1145/2835776.2835837

[21] Yong Zheng, Robin Burke, and Bamshad Mobasher. 2012. Optimal feature selec-
tion for context-aware recommendation using differential relaxation. In In ACM
RecSysâĂŹ 12, Proceedings of the 4th International Workshop on Context-Aware
Recommender Systems (CARS 2012). ACM.

https://doi.org/10.1145/1454008.1454068
https://doi.org/10.1145/1454008.1454068
http://dl.acm.org/citation.cfm?id=2976456.2976476
http://arxiv.org/abs/1606.07792
http://arxiv.org/abs/1606.07792
https://doi.org/10.1145/3109859.3109899
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1703.04247
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1145/3219819.3219965
https://doi.org/10.1145/3234944.3234956
http://arxiv.org/abs/1312.6114v2
https://arxiv.org/abs/1312.6114v2
https://arxiv.org/abs/1312.6114v2
http://arxiv.org/abs/1803.05170
http://arxiv.org/abs/1803.05170
https://arxiv.org/pdf/1706.03762.pdf
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/2835776.2835837


KDD ’19, August 4–8, 2019, Anchorage, AK, USA Ding et al.

A SUPPLEMENT
In this section, we provide details for reproducibility of our experi-
ments and results.

A.1 Implementation Notes
Dataset Processing

We have compared multiple generative models on Yelp4, Di-
anping5[15] and Koubei datasets as described in the experiments
section. And we want to add more details of the methods we use
for dataset processing.

For Yelp public dataset, we convert the explicit Yelp review data
(stars) to implicit feedback data (0/1). We follow [10][14] to treat
reviews with 4 and 5 stars as positive (y = 1) and the others as
negative (y = 0). We only keep active users with sufficient interac-
tions and filter the subset of users with minimum reviews number
as 20. The train/test split is 80%/20%. For each user, we randomly
sample 80% of the interactions for training and use the other 20%
for testing. Since evaluating NDCG@K on all candidates is time
consuming, we adopt the common negative sampling strategy and
set the rate NS = 50. This means that for each positive user-item
interaction data, we randomly sample 50 items which user does not
interact with as negative samples. For fair comparison, we prepare
the pre-training dataset using only the positive interaction data
from the training dataset.

The Dianping dataset is prepared in the same way as Yelp dataset,
except we are using "leave-one-out" strategy for train/test split. For
each user, we randomly hold one positive item for testing and the
remaining positive items are used for training. Users’ minimum
reviews number is set to 4 and the negative sampling rate is set to
NS = 50.

For Koubei dataset, we collect 30 consecutive days of positive
instance (user click) for pre-training and use 14 days of user logs
data, both positive (user click) and negative (impression without
click), for training, and use the data in the next day for testing. For
offline evaluation, we randomly sample subset from the production
CTR dataset and the statistics of pre-train/train/test instances of
the offline dataset is presented in table 4.

Model Configuration and Hyperparameters
In our experiments, we implement and compare three different

generative models during pre-training stage. We implement multi-
head DAE and VAE with the same head number K as MACDAE
for comparison. To compare the effect of different head number K ,
we evaluate the MACDAE model on three different configurations,
K = [4, 8, 16]. For the Koubei dataset, the dimension of the original
input vector x is 532, so we set the hidden layer size dh to 256 and
the number of heads K to 8, and each head has dimension of 32.
As for Dianping dataset, the dimension of input x to encoder is
320, the hidden layer dimension is set to 128 and the number of
heads K is set to 4 with each head as dimension 32. For Yelp dataset,
the input x has dimension 403, and we set hidden layer size to 256
with the number of heads K to 4. For hyper-parameters of DAE
and MACDAE, dropout probability p is set to 0.95. For MACDAE,
we set the penalty cost λ to 0.05 for Koubei dataset and 0.005 for
Yelp/Dianping dataset. And constraint on cosine similarity ϵ is set to

4https://www.kaggle.com/yelp-dataset/yelp-dataset
5http://shichuan.org/HIN_dataset.html

Table 4: Statistics of Koubei Dataset

Dataset Pretrain Instance Train Instance Test Instance
Koubei 17.7M 40.5M 2.9M

0.75. We also use Adam as the default optimizer with learning rate
set to 0.001. The pre-training for all datasets lasts 5 epochs. And the
training for downstream supervised learning model lasts 10 epochs.
In the supervised learning task, the Wide&Deep base model is
implemented as follows. For Koubei dataset, the Wide&Deep model
has deep hidden layers as [512, 256, 256]. For Yelp dataset, we set
the embedding dimension of user and item to 64, deep hidden layers
to [256]. For Dianping dataset, we also set embedding dimension
of user and item to 64 and deep hidden layers to [128].

Running Environment
In terms of running environment, the pre-training/training/testing

of Yelp and Dianping datasets are performed on the MACBOOK Pro
with 2.2 GHz Intel Core i7 8 cores CPU and 16 GB memory, which
lasts around 10 hours for pre-training and 9 hours for training. The
evaluation of Koubei offline dataset is performed on large-scale
distributed systems with 30 workers. For online production model,
the pre-training of Koubei production dataset lasts around one day.
The training of supervised learning models of Koubei dataset last
9-10 hours everyday.

A.2 Algorithm and Code Implementation
We implement all the algorithms described above using tensorflow6

in python. And we will describe the code implementation of the
models we compared.

• MACDAE:We implement our proposedMixture Attentional
Constrained Denoise AutoEncoder (MACDAE) model by
tensorflow API in python. The experimental code is available
on GitHub repo(https://github.com/rockingdingo/context_
recommendation).

• Multi-Head DAE/VAE: For baseline comparison models
multi-headDenoise AutoEncoder(DAE), andmulti-head Vari-
ational AutoEncoder(VAE), we slightly modify the original
research code of tensorflow (https://github.com/tensorflow/
models/tree/master/research/autoencoder) to the multi-head
version.

• Wide&Deep: We follow the official release of Wide&Deep
implementation of tensorflow models (https://github.com/
tensorflow/models/tree/master/official/wide_deep). Our im-
plementation ofWide&Deepmodel with pre-training slightly
modifies the original code. It restores the pre-training model
parameters in current session of tensorflow first and the
parameters of the prediction model are updated by either
feature-based approach or fine-tuning approach.

• DeepFM/NFM: For the baseline comparison model, we refer
the DeepFM and NFM model implementation in this GitHub
repo ( https://github.com/princewen/tensorflow_practice/
tree/master/recommendation). We make several modifica-
tions to the original implementation, such as feature extrac-
tor to fit the input of our datasets.

6https://www.tensorflow.org/

https://github.com/rockingdingo/context_recommendation
https://github.com/rockingdingo/context_recommendation
https://github.com/tensorflow/models/tree/master/research/autoencoder
https://github.com/tensorflow/models/tree/master/research/autoencoder
https://github.com/tensorflow/models/tree/master/official/wide_deep
https://github.com/tensorflow/models/tree/master/official/wide_deep
https://github.com/princewen/tensorflow_practice/tree/master/recommendation
https://github.com/princewen/tensorflow_practice/tree/master/recommendation


Infer Implicit Contexts in Real-time Online-to-Offline Recommendation KDD ’19, August 4–8, 2019, Anchorage, AK, USA

λ=0.0 λ=0.01 λ=0.05 λ=0.1 λ=0.5
0.60

0.65

0.70

0.75

0.80

0.85

0.788 0.783 0.775
0.764 0.763

0.682
0.672 0.669 0.668 0.661

Average Cosine Similarity
ε=0.75, epoch=5
0.75
ε=0.65, epoch=10
0.65

Figure 7: Average cosine similarity of multi-heads in MAC-
DAE model pre-trained on Koubei dataset

A.3 Discussions
Effect of Constraint Threshold and Penalty

To avoid the problem that multiple contextual components con-
verge to similar latent subspaces, we have applied constraint on the
cosine similarity between each heads and add penalty cost to the
overall cost function. We set the hyperparameter ϵ as the thresh-
old of maximal cosine similarity between two heads, and λ as the
penalty cost of breaking the constraint in the objective function.
Figure 7 shows the empirical analysis result of the MACDAE model
pre-trained on the Koubei dataset with different hyper-parameters.
The multi-head number K is set to 8. The penalty cost λ is set to
[0.0, 0.01, 0.05, 0.1, 0.5]. The ϵ is set to 0.75 for 5 pre-training epochs
and 0.65 for 10 pre-training epochs. The results show that with-
out applying the constraint, the average cosine similarity among
multiple heads can be as high as 0.788, which means that the angle
is close to 0 degree. The average cosine similarity will gradually
decrease as we increase the penalty cost λ and the epoch number.

Contextual Feature Importance of Real-world Dataset
We will present our findings of contextual feature importance of

real-world recommendation dataset collected from Koubei’s online
"Guess You Like" recommendation in Table 5. To evaluate the impor-
tance of contextual features, we adopt the popular "leave-one-out"
strategy, which leaves one contextual feature out and repeat the
training process, then evaluate the actual AUC change compared to
the baseline model which all the contextual features are available.
The dataset is collected on click-through rate(CTR) and conversion-
rate(CVR) respectively. CTR measures the percentage of users have
impression on the candidates that actually click, and CVR measures
the percentage of users click the candidates that actually purchase.

The analyses suggest that time-related contextual features c.time
(time intervals of the day , e.g. morning, afternoon, evening,âĂę),
c.weekday (weekdays or weekends) and distance-related features
u.s.dist (realtime distance between users’ location and shop) rank
much higher in AUC contribution on the conversion rate(CVR)
dataset than the click-through rate (CTR) dataset. For the click-
through rate (CTR) dataset, users’ behavioral features, u.s.30d.buy.id
(shops that users purchased in the last 30 days) and u.s.30d.clk.id
(shops that users clicked in the last 30 days), contribute more than
the contextual features and price related features. While for con-
version rate (CVR) dataset, the situation is different, where s.price

Table 5: Contextual Feature Importance(AUC change) of
CTR and CVR datasets in Decreasing Order

CTR Dataset CVR Dataset
Features AUC Change Features AUC Change

u.s.30d.buy.id 0.0458 s.price 0.0745
u.age,u.gender 0.0347 c.time,c.weekday 0.0477
u.s.30d.clk.id 0.0278 u.s.dist 0.0463

c.time,c.weekday 0.0265 u.s.30d.buy.id 0.0449
s.price 0.0263 u.s.30d.clk.id 0.0360
u.s.dist 0.0244 u.age,u.gender 0.0231

h1 h2 h3 h4 h5 h6 h7 h8
Grocery

Hair Salons

Gyms

Restaurants

Coffeeshops

Bed & Breakfast

Figure 8: The heatmap of average attentional weights that
different categories of shop have on each contextual compo-
nent of Yelp Dataset

(average transaction price of shop) ranks on the top in AUC contri-
bution. This is aligned with our expectation that users are heavily
influenced by their past behaviors of clicks and purchases in the
first impression of click-through rate (CTR). Price related features
will influence users’ decision more in the second conversion stage
(CVR), in which clicks convert to actual purchases.

Attentional Weight Analysis
The attentional weights on K multiple contextual components

are calculated based on the original input x and the kth hidden
state vector hk (heads). The different attentional weights reflect the
importance of the original input x place on different partial contex-
tual component. Figure 8 shows the heatmap of attentional weights
of Yelp Dataset pre-trained by MACDAE model. We calculate the
average attentional weights µk on K = 8 different components, and
then average cross different shop categories. The labels on Y axis
reflect different shop categories.


	Abstract
	1 Introduction
	2 SYSTEM OVERVIEW
	3 PROPOSED MODEL
	3.1 Model Intuition
	3.2 Problem Formulation
	3.3 Model Description

	4 Experiment
	4.1 Experiments Setup
	4.2 Comparison Methods
	4.3 Results from Pre-training Dataset
	4.4 Offline Model Evaluation Results
	4.5 Online A/B Test Results
	4.6 Results from Data Mining Perspective of Context in Recommendation

	5 Related Work
	6 Conclusions
	7 Acknowledgements
	References
	A Supplement
	A.1 Implementation Notes
	A.2 Algorithm and Code Implementation
	A.3 Discussions


