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Abstract—Psychological stress is threatening people’s health. It is non-trivial to detect stress timely for proactive care. With the

popularity of social media, people are used to sharing their daily activities and interacting with friends on social media platforms, making

it feasible to leverage online social network data for stress detection. In this paper, we find that users stress state is closely related to

that of his/her friends in social media, and we employ a large-scale dataset from real-world social platforms to systematically study the

correlation of users’ stress states and social interactions. We first define a set of stress-related textual, visual, and social attributes from

various aspects, and then propose a novel hybrid model - a factor graph model combined with Convolutional Neural Network to

leverage tweet content and social interaction information for stress detection. Experimental results show that the proposed model can

improve the detection performance by 6-9 percent in F1-score. By further analyzing the social interaction data, we also discover several

intriguing phenomena, i.e., the number of social structures of sparse connections (i.e., with no delta connections) of stressed users is

around 14 percent higher than that of non-stressed users, indicating that the social structure of stressed users’ friends tend to be less

connected and less complicated than that of non-stressed users.

Index Terms—Stress detection, factor graph model, micro-blog, social media, healthcare, social interaction
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1 INTRODUCTION

1.1 Motivation

PSYCHOLOGICAL Stress is Becoming a Threat to People’s Health
Nowadays.With the rapid pace of life,more andmore peo-

ple are feeling stressed. According to a worldwide survey
reported by Newbusiness in 2010,1 over half of the population
have experienced an appreciable rise in stress over the last
two years. Though stress itself is non-clinical and common in
our life, excessive and chronic stress can be rather harmful to
people’s physical and mental health. According to existing
research works, long-term stress has been found to be related
to many diseases, e.g., clinical depressions, insomnia etc..
Moreover, according to Chinese Center for Disease Control

and Prevention, suicide has become the top cause of death
among Chinese youth, and excessive stress is considered to
be a major factor of suicide. All these reveal that the rapid
increase of stress has become a great challenge to human
health and life quality.

Thus, there is significant importance to detect stress before
it turns into severe problems. Traditional psychological stress
detection is mainly based on face-to face interviews, self-
report questionnaires or wearable sensors. However, tradi-
tional methods are actually reactive, which are usually labor-
consuming, time-costing and hysteretic. Are there any timely
and proactivemethods for stress detection?

The Rise of Social Media is Changing People’s Life, as Well as
Research in Healthcare and Wellness. With the development of
social networks like Twitter and Sina Weibo,2 more and
more people are willing to share their daily events and
moods, and interact with friends through the social net-
works. As these social media data timely reflect users’ real-
life states and emotions in a timely manner, it offers new
opportunities for representing, measuring, modeling, and
mining users behavior patterns through the large-scale
social networks, and such social information can find its the-
oretical basis in psychology research. For example, [7]
found that stressed users are more likely to be socially less
active, and more recently, there have been research efforts
on harnessing social media data for developing mental and
physical healthcare tools. For example, [27] proposed to
leverage Twitter data for real-time disease surveillance;
while [35] tried to bridge the vocabulary gaps between
health seekers and providers using the community gener-
ated health data. There are also some research works [28],
[47] using user tweeting contents on social media platforms

1. http://tinyurl.com/htunr9g
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to detect users’ psychological stress. Existing works [28],
[47] demonstrated that leverage social media for healthcare,
and in particular stress detection, is feasible.

Limitations Exist in Tweeting Content Based Stress Detection.
First, tweets are limited to a maximum of 140 characters on
social platforms like Twitter and Sina Weibo, and users do
not always express their stressful states directly in tweets.
Second, users with high psychological stress may exhibit
low activeness on social networks, as reported by a recent
study in Pew Research Center.3 These phenomena incur the
inherent data sparsity and ambiguity problem, which may
hurt the performance of tweeting content based stress detec-
tion performance. For illustration, let’s see a Sina Weibo
tweet example in Fig. 1. The tweet contains only 13 charac-
ters, saying that the user wished to go home for the Spring
Festival holiday. Although no stress is revealed from the
tweet itself, from the follow-up interactive comments made
by the user and her friends, we can find that the user is actu-
ally stressed from work. Thus, simply relying on a user’s
tweeting content for stress detection is insufficient.

Users’ Social Interactions on Social Networks Contain Useful
Cues for Stress Detection. Social psychological studies have
made two interesting observations. The first is mood conta-
gion [37]: a bad mood can be transferred from one person to
another during social interaction. The second is linguistic ech-
oes [34]: people are known to mimic the style and affect of
another person. These observations motivate us to expand
the scope of tweet-wise investigation by incorporating fol-
low-up social interactions like comments and retweeting
activities in user’s stress detection. This may actually help to
mitigate the single user’s data sparsity problem. Another rea-
son for considering social interactions in stress detection is
based on our empirical findings on a large-scale dataset
crawled from SinaWeibo that the social structures of stressed
users are less connected and thus less complicated than those
of non-stressed users. This is consistent with the Pew
Research Center’s finding that stressed users are less active
than non-stressed ones. The bottom of Fig. 2 illustrates four
social interaction structure patterns. Each node in a structure
pattern represents a user’s interacting friend (who either
commented or retweeted the tweets). If two nodes are also
friends on social network, there is an edge linking both; other-
wise, there is none. We examined 3,000 users on Sina Weibo.
For each user, we collected and merged his/her one week
tweets into one and sense stress from it. Meanwhile, we cap-
tured the top-3 most active friends the user interacted with.

As shown in Fig. 2, stressed users’ interaction structures are
less connected, and thus less complicated than those of non-
stressed users.

1.2 Our Work
Inspired by psychological theories, we first define a set of
attributes for stress detection from tweet-level and user-
level aspects respectively: 1) tweet-level attributes from con-
tent of user’s single tweet, and 2) user-level attributes from
user’s weekly tweets. The tweet-level attributes are mainly
composed of linguistic, visual, and social attention (i.e.,
being liked, retweeted, or commented) attributes extracted
from a single-tweet’s text, image, and attention list. The
user-level attributes however are composed of: (a) posting
behavior attributes as summarized from a user’s weekly tweet
postings; and (b) social interaction attributes extracted from a
user’s social interactions with friends. In particular, the
social interaction attributes can further be broken into: (i)
social interaction content attributes extracted from the content
of users’ social interactions with friends; and (ii) social inter-
action structure attributes extracted from the structures of
users’ social interactions with friends.

To maximally leverage the user-level information as well
as tweet-level content information, we propose a novel
hybrid model of factor graphmodel combined with a convo-
lutional neural network (CNN). This is because CNN is
capable of learning unified latent features from multiple
modalities, and factor graph model is good at modeling the
correlations. The overall steps are as follows: 1) we first
design a convolutional neural network (CNN) with cross
autoencoders (CAE) to generate user-level content attributes
from tweet-level attributes; and 2) we define a partially-
labeled factor graph (PFG) to combine user-level social inter-
action attributes, user-level posting behavior attributes and
the learnt user-level content attributes for stress detection.

We evaluate the proposed model as well as the contribu-
tions of different attributes on a real-world dataset from Sina
Weibo. Experimental results show that by exploiting the
users’ social interaction attributes, the proposed model can
improve the detection performance (F1-score) by 6-9 percent
over that of the state-of-art methods. This indicates that the
proposed attributes can serve as good cues in tackling the
data sparsity and ambiguity problem. Moreover, the pro-
posed model can also efficiently combine tweet content and
social interaction to enhance the stress detection performance.

We further conduct in-depth studies on a large-scale
dataset from Sina Weibo. Beyond user’s tweeting contents,

Fig. 1. Sample tweets from Sina Weibo. In each tweet, the top part is
tweet content with text and an image; the bottom part shows the social
interactions of tweets where there are multiple indicators of stress: men-
tions of ‘busy’ and ‘stressed’, ‘working overtime’, ‘failed the exam’,
‘money’, and a stressed emoticon.

Fig. 2. The sampling test results of the diversity of users’ social struc-
tures from Sina Weibo, by using the top 3 interacted friends of the users.

3. Social Media and the Cost of Caring, 2015, http://www.
pewinternet.org/files/2015/01/PI_Social-media-and-stress_0115151.pdf
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we analyze the correlation of users’ stress states and their
social interactions on the networks, and address the prob-
lem from the standpoints of: (1) social interaction content, by
investigating the content differences between stressed and
non-stressed users’ social interactions; and (2) social interac-
tion structure, by investigating the structure differences in
terms of structural diversity, social influence, and strong/
weak tie. Our investigation unveils some intriguing social
phenomena. For example, we find that the number of social
structures of sparse connection (i.e., with no delta connec-
tions4) of stressed users is around 14 percent higher than
that of non-stressed users, indicating that the social struc-
ture of stressed users’ friends tend to be less connected and
complicated, compared to that of non-stressed users.

The contributions of this paper are as following.

� We propose a unified hybrid model integrating CNN
with FGM to leverage both tweet content attributes
and social interactions to enhance stress detection.

� We build several stressed-twitter-posting datasets by
different ground-truth labeling methods from sev-
eral popular social media platforms and thoroughly
evaluate our proposed method on multiple aspects.

� We carry out in-depth studies on a real-world large-
scale dataset and gain insights on correlations between
social interactions and stress, as well as social struc-
tures of stressed users.

The rest of this paper is organized as follows. Section 2
gives an overview of related works. Section 3 presents
our problem statement. Then in Section 4, we introduce the
definitions of the proposed attributes. Section 5 presents the
hybrid model and training method for stress detection.
Experimental results are shown in Section 6. Then in Sec-
tion 7, we present several in-depth studies on our dataset
for further insights. Finally, we make some conclusions and
discuss in Section 8.

2 RELATED WORK

Psychological stress detection is related to the topics of sen-
timent analysis and emotion detection.

Research on Tweet-Level EmotionDetection in Social Networks.
Computer-aided detection, analysis, and application of emo-
tion, especially in social networks, have drawn much atten-
tion in recent years [8], [9], [28], [41], [52], [53]. Relationships
between psychological stress and personality traits can be an
interesting issue to consider [11], [16], [43]. For example, [1]
providing evidence that daily stress can be reliably recog-
nized based on behavioral metrics from users mobile phone
activity. Many studies on social media based emotion analy-
sis are at the tweet level, using text-based linguistic features
and classic classification approaches. Zhao et al. [53] pro-
posed a system calledMoodLens to perform emotion analysis
on the Chinese micro-blog platform Weibo, classifying the
emotion categories into four types, i.e., angry, disgusting, joy-
ful, and sad. Fan et al. [9] studied the emotion propagation
problem in social networks, and found that anger has a stron-
ger correlation among different users than joy, indicating that
negative emotions could spread more quickly and broadly in
the network. As stress is mostly considered as a negative
emotion, this conclusion can help us in combining the social

influence of users for stress detection. However, these work
mainly leverage the textual contents in social networks. In
reality, data in social networks is usually composed of
sequential and inter-connected items from diverse sources
andmodalities, making it be actually cross-media data.

Research on User-Level Emotion Detection in Social Networks.
While tweet-level emotion detection reflects the instant emo-
tion expressed in a single tweet, people’s emotion or psycho-
logical stress states are usually more enduring, changing over
different time periods. In recent years, extensive research
starts to focus on user-level emotion detection in social net-
works [29], [36], [38], [50]. Our recent work [29] proposed to
detect users psychological stress states from social media by
learning user-level presentation via a deep convolution net-
work on sequential tweet series in a certain time period.Moti-
vated by the principle of homophily, [38] incorporated social
relationships to improve user-level sentiment analysis in
Twitter. Though some user-level emotion detection studies
have been done, the role that social relationships plays in one’s
psychological stress states, and how we can incorporate such infor-
mation into stress detection have not been examined yet.

Research on Leveraging Social Interactions for Social Media
Analysis. Social interaction is one of the most important fea-
tures of social media platforms. Now many researchers are
focusing on leveraging social interaction information to help
improve the effectiveness of social media analysis. Fischer
and Reuber [12] analyzed the relationships between social
interactions and users’ thinking and behaviors, and found
out that Twitter-based interaction can trigger effectual cogni-
tions. Yang et al. [49] leveraged comments on Flickr to help
predict emotions expressed by images posted on Flickr.How-
ever, theseworkmainly focused on the content of social inter-
actions, e.g., textual comment content, while ignoring the
inherent structural information like how users are connected.

3 PROBLEM FORMULATION

Before presenting our problem statement, let’s first define
some necessary notations.

Let V be a set of users on a social network, and let jV j
denote the total number of users. Each user vi 2 V posts a
series of tweets, with each tweet containing text, image, or
video content; the series of tweets contribute to users social
interactions on the social network.

Definition 1 (Stress state). The stress state y of user vi 2 V at
time t is represented as a triple ðy; vi; tÞ, or briefly yti. In the
study, a binary stress state yti 2 f0; 1g is considered, where
yti ¼ 1 indicates that user vi is stressed at time t, and yti ¼ 0
indicates that the user is non-stressed at time t, which can be
identified from specific expressions in user tweets or clearly
identified by user himself, as explained in the experiments. Let
Y t be the set of stress states of all users at time t.

Definition 2 (Time-varying user-level attribute matrix).
Each user in V is associated with a set of attributes A. Let Xt

be a jV j � jAj attribute matrix at time t, in which every row xt
ix
t
i

corresponds to a user, each column corresponds to an attribute,
and an element xt

i;j is the jth attribute value of user vi at time t.

A user-level attribute matrix describes user-specific featu
res, and can be defined in different ways. This study consid-
ers user-level content attributes, statistical attributes, and
social interaction attributes. A detailed discussion of the
matrix can be found in Section 4.4. Meaning that three points are connected with each other.
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Definition 3 (Time-varying edge set). Users are linked by
edges of certain types. Let Et � V � V � C be a set of edges
between users at time t. Three types of edges are considered in
the study. For an edge e ¼ ðvi; vj; cÞ 2 Et, c ¼ 0 indicates that
vi follows or is followed by vj at time t, c ¼ 1 indicates that
there are positive words in comments between user vi and vj at
time t, and c ¼ 2 indicates that there are negative words in
comments between them at time t.

Definition 4 (Time-varying attribute-augmented net-
work). An attribute-augmented network at time t is comprised
of four elements, including 1) a user set V t, 2) an edge set Et, 3)
a user-level attribute matrix set Xt, and 4) a stress state set for
all users Y t at time t, denoted as Gt ¼ ðV t; Et;Xt; Y tÞ.
Given a sequence of labeled time-varying attribute-aug-

mented networks at different times, our goal is to learn a
model that can best fit the relationships among users’ stress
states, user-level attributes, and users’ social linkage, and
then detect users’ unknown stress states with the model.

Problem 1 (Psychological stress detection). Given a series
of T partially labeled time-varying attribute-augmented net-
works fGt ¼ ðV t

L; V
t
U ; E

t; Y t
LÞ j t 2 f1; 2; . . . ; Tgg, V t

L is a set
of users with labeled stress states Y t

L at time t, and V t
U is a set of

unlabeled users, the objective is to learn a function

f : fG1; G2; . . .GTg ! fY 1
U ; Y

2
U ; . . .Y

T
U g

to predict unlabeled users’ stress states.

4 ATTRIBUTES CATEGORIZATION AND DEFINITION

To address the problem of stress detection, we first define
two sets of attributes to measure the differences of the
stressed and non-stressed users on social media platforms:
1) tweet-level attributes from a user’s single tweet; 2) user-
level attributes summarized from a user’s weekly tweets.

4.1 Tweet-Level Attributes
Tweet-level attributes describe the linguistic and visual con-
tent, as well as social attention factors (being liked, com-
mented, and retweeted) of a single tweet.

For linguistic attributes, we take the most commonly
used linguistic features in sentiment analysis research. Spe-
cifically, we first adopt LTP [4]—A Chinese Language Tech-
nology Platform—to perform lexical analysis, e.g., tokenize
and lemmatize, and then explore the use of a Chinese LIWC
dictionary—LIWC2007 [14], to map the words into posi-
tive/negative emotions. LIWC2007 is a dictionary which
categorizes words based on their linguistic or psychological
meanings, so we can classify words into different categories,
e.g., positive/negative emotion words, degree adverbs.
We have also tested other linguistic resources including
NRC5 and HowNet,6 and found that the performances were
relatively the same, so we adopted the commonly used
LIWC2007 dictionary for experiments. Furthermore, we
extract linguistic attributes of emoticons (e.g., and ) and
punctuation marks (‘!’, ‘?’, ‘...’, ‘.’). Weibo defines every
emoticon in square brackets (e.g., they use [haha] for
“laugh”), so we can map the keyword in square brackets to
find the emoticons. Twitter adopts Unicode as the represen-
tation for all emojis [15], [24], which can be extracted
directly. The list of linguistic attributes and descriptions are
shown in Table 1.

As for the visual attributes, we use API from OpenCV7 to
perform picture processing and color-related attributes
computation, e.g., saturation, brightness, warm/cool color,
clear/dull color in Table 1. For a special class of attributes
named five-color theme, we adopt algorithm from papers
on affective image classification [32] and color psychology
theories [23], [45]. In this work, we did not adopt the direct
emotional detection results as visual features because we
need multi-dimensional visual features for deep model
learning, while a direct visual emotional classification result
only gives a single or very few dimensions as features.
However, with the development of emotion-sensitive visual
representation techniques, it would be possibility to adopt
automatic visual features in the future. The details of tweet-
level attributes are summarized in Table 1.

TABLE 1
Summary of Tweet-Level Attributes

Category Short Name # Description

Linguistic Positive & Negative EmotionWords 2 Number of positive and negative emotion words
Positive & Negative Emoticons 2 Number of popular positive and negative emoticons, e.g., and
Punctuation Marks & Associated
EmotionWords

4 To signify the intensity of emotion four typical punctuation marks
(‘!’, ‘?’, ‘...’, ‘.’) are considered.

Degree Adverbs & Associated Emo-
tion Words

2 In examples “{I feel a little bit sad}” and “{I feel terribly sad}” , ‘sad’ expresses
different negative feelings. We use 1-3 to represent neutral, moderate, and
severe degree of positive emotions, and the minus to represent the negative
ones.

Visual Five-color theme 15 A combination of five dominant colors in HSV color space, indicating main
color distribution of images, has been revealed to be important on human emo-
tions by psychology and art theories.

Saturation 2 The mean value of saturation and its contrast.
Brightness 2 The mean value of brightness and its contrast.
Warm/Cool color 1 Ratio of cool colors with hue ([0-360]) in the HSV space in [30, 110].
Clear/Dull color 1 Ratio of colors with brightness ([0-1]) and saturation < 0.6.

Social Social Attention 3 Number of comments, retweets, and likes

The column “#“ indicates the feature vector length for each type of feature.

5. http://www.saifmohammad.com/WebPages/NRC-Emotion-
Lexicon.htm

6. http://www.keenage.com
7. http://opencv.org
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4.2 User-Level Attributes
Compared to tweet-level attributes extracted from a single
tweet, user-level attributes are extracted from a list of user’s
tweets in a specific sampling period. We use one week as the
sampling period in this paper. On one hand, psychological
stress often results from cumulative events or mental states.
On the other hand, users may express their chronic stress
in a series of tweets rather than one. Besides, the aforemen-
tioned social interaction patterns of users in a period of
time also contain useful information for stress detection.
Moreover, as aforementioned, the information in tweets is
limited and sparse, we need to integrate more complemen-
tary information around tweets, e.g., users’ social interac-
tions with friends.

Thus, appropriately designed user-level attributes can pro-
vide amacro-scope of a user’s stress states, and avoid noise or
missing data. Here, we define user-level attributes from two
aspects to measure the differences between stressed and non-
stressed states based on users’ weekly tweet postings: 1) user-
level posting behavior attributes [29] from the user’s weekly
tweet postings; and 2) user-level social interaction attributes
from the user’s social interactions beneath his/her weekly
tweet postings. The details of user-level attributes are summa-
rized in Table 2.

5 MODEL FRAMEWORK

Two challenges exist in psychological stress detection.
1) How to extract user-level attributes from user’s tweeting series
and deal with the problem of absence of modality in the tweets? 2)

How to fully leverage social interaction, including interaction
content and structure patterns, for stress detection? To tackle
these challenges, we propose a novel hybrid model by com-
bining a factor graph model with a convolutional neural
network (CNN), since CNN is capable of learning unified
latent features from multiple modalities, and factor graph
model is good at modeling the correlations. In this section,
we will first introduce the architecture of our model, and
then describe the details of each part of the proposed model.

5.1 Architecture
Fig. 3 shows the architecture of our model. There are three
types of information that we can use as the initial inputs,
i.e., tweet-level attributes, user-level posting behavior attrib-
utes, and user-level social interaction attributes, whose
detailed computation will be described later. We address
the solution through the following two key components:

� First, we design a CNN with cross autoencoders
(CAE) to generate user-level interaction content attrib-
utes from tweet-level attributes. The CNN has been
found to be effective in learning stationary local attrib-
utes for series like images [3], [6] and audios [30], [48].

� Then, we design a partially-labeled factor graph (PFG)
to incorporate all three aspects of user-level attributes
for user stress detection. Factor graph model has been
widely used in social network modeling [10], [39],
[44]. It is effective in leveraging social correlations for
different prediction tasks.

TABLE 2
Summary of User-Level Attributes

Category Short Name # Description

Posting Behavior

Social Engagement 3 The numbers of @-mentions, @-retweets, and @-replies in weekly

tweet postings, indicating one’s social interaction activeness with

friends.

Tweeting time 24 The numbers of tweets posted in hours with a 24-dimensional vector.

Tweeting type 4 Categorize users’ tweets into mainly four types based on general cate-

gories of social media platforms:

(1) Image tweets (tweets containing images);

(2) Original tweets (tweets that are originally authored and posted by

the user);

(3) Information query tweets (tweets that ask questions or ask for help );

(4) Information sharing tweets (tweets that contain outside hyperlinks).

We use a 4-dimensional vector of the numbers of tweets in the above 4

types respectively to quantify the tweeting type attribute.

Tweeting linguistic style 10 Adopt 10 categories from LIWC that are related to daily life, social

events, e.g., personal pronouns, home, work, money, religion, death,

health, ingestion, friends, and family. We extract words from users’

weekly tweet postings, and use a 10-dimensional vector of numbers of

words in the 10 categories

Social Interaction

Content Style

Words 10 A 10-dimensional integer vector, with each value representing the

number of words from social interaction content of users weekly tweet

postings in each word category from LIWC;

Emoticons 2 A 2-dimensional integer vector with each value representing the num-

ber of positive and negative emoticons (e.g., and ) in tweets.

Social Influence

Stressed Neighbor Count 1 The number of the user’s stressed neighbors.

Strong-tie Count 1 The number of stressed neighbors with strong tie.

Weak-tie Count 1 The number of stressed neighbors with weak tie.

Follower Count 1 The number of the user’s followers.

Fans Count 1 The number of the user’s fans.

Social Structure 8 Representing the structure distribution of the user’s interacted friends,

where each element refers to the existence of the corresponding struc-

ture in Fig. 6.

The column “#“ indicates the feature vector length for each type of feature.
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Take the user labeled with a red star in Fig. 3 as an exam-
ple. We extract attributes from each tweet of the user to form
tweet-level attributes as shown in the cylinders. Different col-
ors represent different modalities and blank (white color) rep-
resents modalities that are not available in the tweet. The
tweet-level attributes in the cylinder are fed to cross autoen-
coders (CAEs) [28]. The CAEs are embedded in a CNN [26],
[29] that will integrate attributes from CAEs into the aggre-
gated user-level content attributes by pooling each attribute
map. The user-level content attributes, user-level posting
behavior attributes, and user-level social interaction attributes
together form the user-level attributes. The user-level attrib-
utes of a user at time t are denoted by xt

i (i ¼ 1; 2; . . .) in Fig. 3.
The route of the other users’ attributes in Fig. 3 are similar,
which finally form their user-level attributes. We focus on the
attribute flow of the user with red star and omit the detailed
route of other users’ attributes in the figure. The stress state of
each user at time t is denoted by yti (i ¼ 1; 2; . . .), respectively.
The user-level attributes and the stress states are connected
by an attribute factor, while stress states of different users are
connected by social factors. Stress states of the same user at
adjacent times are connected by dynamic factors. We define
the graph as a (PFG). By calculating the factors, we can finally
derive all users’ stress states over different weeks.

In the following, we will describe the details of the CNN
with CAE and PFG used in the architecture that tackles
the tweet series with cropped modalities and leverages the
social interaction information between users, respectively.

5.2 Learning Aggregated Attributes From Tweet
Series

To aggregate user-level attributes, we need to face two
major challenges: (1) Missing modality, e.g., tweets with
only text but no picture AND (2) How to generate a distrib-
uted and modality-invariant representation for each tweets.

To solve above challenges in cross-media tweet data, we
use a cross auto-encoder (CAE) [28] to learn the modality-
invariant representation of each single tweet with different
modalities. Denoting the text, visual, and social attributes of
a tweet by vT , vI , and vS , the CAE is formulated as follows:

u ¼ fðwTvT þ wIvI þ wSvS þ bÞevT ; evI; evSð Þ ¼ fðewuþ ebÞ;
�

(1)

where u is the modality-invariant representation. wT , wI ,
wS , and b are parameters in the encoder, whereas ewT , ewI ,ewS , and eb are parameters in the decoder. fð�Þ is the activa-
tion function. We use a sigmoid activation function
fðzÞ ¼ 1

1þexpð�zÞ in our model. evT , evI , evS are the reconstructed

input modalities.
The basic idea of CAE is to force the model to reconstruct

missing modalities in the training stage and to learn cross
modalities correlation from the data (e.g., negative words in
text correlate with cool color in pictures). [18] While training
the cross auto-encoder, we use training data that contains all
the three modalities. We manually disable the visual modal-
ities and/or social interaction8 modality of the training
data, and require it to reconstruct all three modalities. We
train the CAE with a cropped set of data vT ; vI ; vS that
inputs from one or two modalities are absent, while requir-
ing it to reconstruct all the three.

We use the stochastic gradient descent to train the CAE.
Denoting all the parameters in the CAE as u, the energy
function is defined as follows:

J vT ; vT ; vS; uð Þ ¼ 1

2

X
M2T;I;S

evM � vMk k2
 !

þ �

2

X
m2T;I;S

wMk k2 þ ewMk k2
 !

:

(2)

The first term measures the reconstruction accuracy. The
second term is the weight decay regularization term that
prevents parameters in the model from diverging arbi-
trarily. � is the regularization weight. Using data with dif-
ferent modalities as input, the CAE can be trained and learn
a modality-invariant representation u.

The attributes of tweets, which come from a user’s weekly
tweets in timeline, form a time series. To model a user as a
subject of series of tweets, we apply CNN [26] which has
large learning capacity, but has much fewer connections and
parameters to learn than similar-size standard network
layers. It focuses on learning stationary local attributes from

Fig. 3. Architecture of our model. The model consists of two parts. The first part is a CNN. The second part is a FGM. The CNN will generate user-
level content attributes by convolution with CAE filters as input to the FGM. Take the user labeled with a red star as example. Tweet-level attributes of
the user are processed through a convolution with CAE to form the user-level content attributes. The user-level attributes are denoted by xti in the left
box. Every xti contains three aspects: user-level content attributes, user-level posting behavior attributes, and user-level social interaction attributes.
Data of other users follows the same route. In the FGM, attribute factors connect user-level attributes to corresponding stress states. Social factors
connect the stress state of different users. Dynamic factors connect stress state of a user over time. The output of the user’s user-level stress state
at time t is yt1 as highlighted in red, which actually denotes the stress state of the user in weekly period in this paper.

8. Different from the social interaction attributes in this paper, the
social interaction here is the attribute of a single tweet defined in [28]. It
is simply the mean and variance of interaction numbers of a tweet.
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series like images (pixel series), audio, and other time series.
We can learn user-level content attributes from a series of
individual tweets in a time series to describe a user’s stress
state over a week. All attributes of tweets in a time series
form a one-Dimensional series. We use an 1-Dimension
CNN in ourmodel.

CAE units are listed in the attribute maps of the CNN.
They connect to a patch of instance. CAE units take patches
with missing modalities and generate modality-invariant
attribute maps. The CAE units are used as filters in the 1-D
CNN and convolute over the sequence of tweets to form
one feature map. Thus the latent user-level content attrib-
utes can be generated from the tweet-level attributes of sin-
gle tweets.

Pooling is another important step to summarize attribute
maps into fewer attribute instances. Though different users
have different number of tweets in different weeks, the
period of time over which the tweets are sampled are the
same. We simply pool each attribute map into one pooled
attribute. There are two commonly used pooling operations:
max-pooling and mean-pooling. When max pooling is used,
the pooled attribute unit is assigned with the maximal acti-
vation among all units in the attribute map. When mean-
pooling is applied, the mean of activations of all units in the
attribute map is assigned to the pooled attribute unit. Since
we pool over the period of time rather than a certain num-
ber of tweets, we use mean-over-time (MOT) in this paper,
which can be calculated by summing up the activations,
since the tweet instances are sampled in the same length of
time intervals.

5.3 Learning Latent Correlations between Tweet’s
Content and Social Interactions

As the social correlation between users and time-dependent
correlation are hard to be modeled using classic classifiers
such as SVM, we use a partially-labeled factor graph
model (PFG), which was first proposed in [39], to incorpo-
rate social interactions and tweets’ content for learning and
detecting user-level stress states.

We define an objective function by maximizing the con-
ditional probability of users’ stress states YY given a series of
attribute-augmented networks

GG ¼ fGt ¼ fðV t; Et;Xt; Y tÞgg; t 2 f1; . . . ; Tg;

and V ¼ V 1 ¼ � � � ¼ V T ; jV j ¼ N , i.e., PuðYY jGGÞ. The factor
graph [25] provides a way to factorize the “global” probabil-
ity as a product of “local” factor functions, which makes the
maximization simple, i.e.,

P ðYY jGGÞ ¼ P ðXX;GjY ÞP ðY Þ
P ðXX;GÞ / P ðY jGÞP ðXXjY Þ

/ P ðY jGÞ
Y
vi2V

P ðxixijyiÞP ðYY jGGÞ

¼
YT
t¼1

YN
i¼1

fðxt
ix
t
i; y

t
iÞhðyti; ytþ1i Þ

Y
e2Et

gðyeÞ;

(3)

The joint probability has three types of factor functions,
corresponding to the intuitions we have discussed.

Attribute Factor. We use this factor fðxtixti; ytiÞ to represent
the correlation between user vi’s stress state at time t and
her/his attributes xxt

i. More specifically, we instantiate the

factor by an exponential-linear function:

fðxxt
i; y

t
iÞ ¼

1

Za
exp aTxxt

i

� �
; (4)

where a is a parameter of the proposed model, and Za is a
normalization term.

Dynamic Factor. We use this factor fðyti; ytþ1i Þ to represent
the time correlation between user vi’s stress state at time t
and tþ 1. More specifically, we instantiate the factor by an
exponential-linear function:

hðyti; ytþ1i Þ ¼
1

Zg

exp gTh0ðyti; ytþ1i Þ
� �

; (5)

where g is the model parameters for this type of factor, h0ð�Þ
is defined as a vector of indicator functions, and Zg is the
normalization term.

Social Factor. We use social factor gðyeÞ (where e ¼ ðvti;
vtj; cÞ 2 Et) to represent the correlation between user vi and
vj’s stress states according to c at time t:

gðyeÞ ¼ 1

Zbc

exp bc
Tg0ðyti; ytjÞ

n o
; (6)

where bc is the model parameters for this type of factor, g0ð�Þ
is defined as a vector of indicator functions, and Zbc is the
normalization term.

Finally, by combining Eq. (4), (5), and (6) into Eq. (3), the
objective function as the log-likelihood of the proposed
model is,

O ¼
XT
t¼1

XN
i¼1

aTxxt
i þ
XT
t¼1

XN
i¼1

gTh0ðyti; ytþ1i Þ

þ
XT
t¼1

X
e2Et

bTc g
0ðyti; ytjÞ � logZ;

(7)

where Z ¼ Za

Q
c2C ZbcZg is the global normalization term.

Algorithm 1. Learning and Inference by Factor Graph

Input: a series of time-varying attribute augmented network GG
with stress states on some of the user nodes, learning
rate h;

Output: parameter value u ¼ fa; fbcg; gg and full stress state
vector YY ;

Randomly initialize YY ;
Initialize model parameters u;
repeat
Compute gradientra;rbc;rg ;
Update a aþ h�ra;
Update bc  bc þ h�rbc;
Update g  g þ h�rg;

until convergence;

Learning. Learning the predictive model is to estimate a
parameters configuration u ¼ ða; fbcg; gÞ from the partially-
labeled dataset and to maximize the log-likelihood objective
function Eq. (7), i.e., u� ¼ argmaxuOðuÞ.

For optimization, we adopt a gradient decent method.
Specifically, we derive the gradients with respect to each
parameter in our objective function of Eq. (7)
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(8)

where in the first equation, E½PT
t¼1
PN

i¼1 fðxxti; ytiÞ� is the
expectation of the summation of the attribute factor func-
tions given the data distribution over YY and GG in the train-
ing set, and EPaðYY jGGÞ½

PT
t¼1
PN

i¼1 fðxxt
i; y

t
iÞ� is the expectation

of the summation of the attribute factor functions given by
the estimated model. The other expectation terms have simi-
lar meanings in the other equation.

As the network structure in the real world may contain
cycles, it is intractable to estimate the marginal probability in
the second terms of (8). In this work, we adopt Loopy Belief
Propagation (LBP) [33] to calculate the marginal probability
of P ðYY Þ and compute the expectation terms. The learning
process can then be described as an iterative algorithm. Each
iteration contains two steps. First, we call LBP to calculate
marginal distributions of unknown variables PaðYY jGGÞ. Sec-
ond, we update a, b, g with the learning rate h by Eq. (9) The
learning algorithm terminates when it reaches convergence,

unew ¼ uold þ h
@O
@u

: (9)

Detection. With the estimated parameter u, we can now
assign the value of unknown labels YY by looking for a label
configuration that will maximize the objective function, i.e.,

Y � ¼ argmax OðYY jGG; uÞ: (10)

In this paper, we use a max-sum algorithm [31] to solve this
problem.

6 EXPERIMENTS

In this section, we will present the effectiveness and effi-
ciency of our hybrid model on user-level stress detection.

6.1 Dataset Collection
To conduct observations and evaluate our succecive model,
we first collect a set of datasets using different labeling
methods, which are listed as following:

Dataset DB1. It is a challenge to construct a dataset with
reliable ground truth labels from large-scale noisy social
media data. The data crawled from social platforms is usu-
ally massive, thus manual labeling methods are not feasible

due to the uncontrollable cost and quality. To solve this prob-
lem, we employed a sentence pattern labeling method to
automatically extract labeled data from the crawled large-
scale social media data. We first crawled 350 million tweets
data via Sina Weibo’s REST APIs9 from Oct. 2009 to Oct.
2012. Sina weibo, as the biggest microblog website in China,
provides users an open online platform for information shar-
ing, communication and obtaining. Similar to Twitter and
Facebook, users on Sina Weibo can post contents with multi-
ple modalities, including text, image, social action (retweet,
comment, favorite), video and etc. Despite these user gener-
ated contents, user relationship, which takes the form of fol-
lowing on Sina Weibo, also contains abundant information
for data analysis. Utilizing above information and features
extracted frommultiplemodalities, we are able to investigate
users emotions, stresses and opinions.

We then tried to identify the weekly stressed state of
users. Facing the vast scale of social images, manually label-
ing is powerless. Instead, we use tags and comments for
automatic image labeling, which is a common method in
previous work [20], [21], [46]. This is done by searching for
tweets containing patterns like “I feel stressed this week” and
“I feel stressed so much this week”, which are used to indicate
that the users are stressed. The weeks containing such sen-
tence patterns are labeled as “stressed” weeks. Similarly,
we identify “non-stressed” weeks of users by searching for
tweets with patterns like “I feel relaxed” and “I feel non-
stressed”. These sentence patterns have been shown to have
high precision against user-assigned psychological state
labels validated by online surveys in weibo [29].

In this way, we collected over 19,000 weeks of tweets that
are labeled as stressed, and over 17,000 weeks of non-
stressed users’ tweets. There are 492,676 tweets from 23,304
users in total. We use this dataset for experiments, analysis
and further in-depth studies, which is represented by DB1
in this paper. Details of the dataset are shown in Table 3.

Dataset DB2. We verified the reliability of the above
ground truth labeling method through dataset DB2 in
Table 4. It is a small dataset collected from the users who
have shared the score of a psychological stress scale PSTR10

designed by psychologists via Weibo. Guided by the rules
of the PSTR scale, a user is taken as stressed when the score
is larger than 80, otherwise non-stressed. We thus crawled
the scores posted by users, and used the scores as ground
truth label for the set of tweets in þ�3-day window.

TABLE 3
Overview of the Weibo-Stress Dataset

non-stressed stressed total

#tweets 253,638 239,038 492,676
#users 12,230 11,074 23,304
#weeks 17,861 19,136 36,997
#tweets/week* 14.2 12.5 13.3
#weeks/user* 1.46 1.73 1.59
#interacting users/week* 5.79 6.99 6.35

* means average number.

TABLE 4
Details of Other Datasets

Platform Stress label Number
of tweets

Number
of users

Number
of weeks

Tweets
per week

DB2:Sina Weibo
(2010.2-2011.9)

stressed 1,459 98 98 14.9
non-stressed 1,845 112 112 16.5
summary 3,304 210 210 15.7

DB3:Tencent Weibo
(2011.11-2013.3)

stressed 138,570 7,845 8,974 15.4
non-stressed 172,585 8,239 9,976 17.3
summary 311,155 16,084 18,950 16.4

DB4:Twitter
(2009.6-2009.12)

stressed 54,748 4,905 6,081 9.0
non-stressed 75,357 4,018 6,545 11.5
summary 130,105 8,923 12,626 10.3

9. http://open.weibo.com
10. http://types.yuzeli.com/survey/pstr50
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Dataset DB3 and DB4. To further test our method, we col-
lected two more datasets from Tencent Weibo (DB3) and
Twitter (DB4). They are again labeled using the sentence
pattern labeling method as described above for DB1. In par-
ticular, as social platforms of different languages, Weibo
and Twitter have many differences. [51]. For example, their
top topics differs very much. Thus, experiments on Twitter
can validate the universality of our method. The details of
the two datasets are presented in Table 4.

6.2 Experimental Setup
In the following experiments, we first train and test our
model on the large-scale Sina Weibo dataset DB1. We then
test our model on the other 3 datasets to show effectiveness
of the proposed model on different data sources or different
ground truth labeling methods. For all of our analysis, we
use 5-fold cross validation, with over 10 randomized experi-
mental runs.

Comparison Methods.We compare the following classifica-
tion methods for user-level psychological stress detection
with our FGM+CNNmodel (denoted as FGM here).

� Logistic Regression (LRC) [19]: it trains a logistic
regression classification model and then predicts
users’ labels in the test set.

� Support Vector Machine (SVM) [5]: it is a popular and
binary classifier that is proved to be effective on a
huge category of classification problems. In our
problem we use SVMwith RBF kernel.

� Random Forest (RF) [42]: it is an ensemble learning
method for decision trees by building a set of deci-
sion trees with random subsets of attributes and bag-
ging them for classification results.

� Gradient Boosted Decision Tree (GBDT) [13]: it trains a
gradient boosted decision tree model with features
associated with each user.

� Deep Neural Network (DNN) [29] for user-level stress
detection: it is proposed to deal with the problem of
user-level stress detection problem with a convolu-
tional neural network (CNN) with cross autoen-
coders. This is the real baseline method that we can
compare our proposed model with.

We employ scikit-learn11 for the above methods.
Evaluation Measures. For a fully investigation of the pro-

posed methods, we consider the following aspects:

� Effectiveness. We evaluate the detection performance
of our model and comparison methods in terms of
Accuracy (Acc.), Recall (Rec.), Precision (Prec.) and
F1-Measure (F1) [2].

� Efficiency. We evaluate efficiency of the methods
by comparing the CPU time of training each model.
All experiments are performed on an x64 machine
with 2.9 GHz intel Core i7 CPU and 8 GB RAM.

6.3 Experimental Results on DB1
Comparison of Detection Performance. To evaluate the effective-
ness of ourmodel, we first conduct a test using different mod-
els based on the Weibo-Stress dataset. In this experiment, we
used all the three attributes described in previous section:
user-level social interaction attributes, user-level posting

behavior attributes and user-level content attributes gener-
ated from the tweet-level attributes by CNN+CAE. Table 5
shows the experimental results. We see that FGM gains supe-
rior results against the comparative methods, which verifies
that our proposed model can effectively leverage the social
interaction and social structure attributes for stress detection.
Compared with the results in [29], which also aims at user-
level stress detection based on social media data sources, our
proposed model improves the detection performance by up
to 9 percent on F1-score. These results demonstrate the feasi-
bility of stress detection via the brand new information source
of social interactions, and that our proposedmodel can signif-
icantly enhance the performance by leveraging the social
interaction information.We further perform t-tests and all the
p-values are 	 0:01, indicating that the improvements of our
proposed models over the comparison methods are statisti-
cally significant.

Comparison of Model Efficiency. To evaluate the efficiency
of the aforementioned methods, we compare the CPU time
of training each model. The comparison results are also
shown in Table 5. Overall, all methods have good efficiency
performance, and the running time of different methods
ranges from seconds to minutes. FGM results in a slightly
lower but better performance compared to other methods.

Factor Contribution Analysis. The definition of factors is
important to the performance of the Factor Graph Model. We
have three types of factors in our model, i.e., attribute factor,
social factor, and dynamic factor. To analyze the impact of
different factors in our model, we compare the detection per-
formancewith different combinations of factors in this experi-
ment, as shown in Fig. 4a. Specifically, we first use all the
three factors, denoted as FGM, then we remove the following
factors respectively: social factor, dynamic factor and both of
them, denoted as FGM-S, FGM-D and FGM-S-D. We see that
the worst performance is achieved if we incorporate only the
attribute factor. However, integrating attribute factor with
social or dynamic factor both improve the performance,
revealing that both of the two factors are effective for stress
detection. Specifically, incorporating social factor significantly
improves the detection performance to around 91 percent on
accuracy, indicating that the social factor is extremely effec-
tive. The best detection performance is observed when using
all three types of factors.

Training Data Scale Analysis. To evaluate the data scalabil-
ity of the proposed model, we try to train the model with
different scale of training data, and compare the final detec-
tion performance in F1-score. In this test, we use all the
three attributes as input. Fig. 4b shows the trend of detec-
tion performance with different proportions of training
data. It is clear that when using only 1 percent of all training
data, our model fails to achieve meaningful detection per-
formance. When adopting approximately 30 percent of all
training data, our model can obtain an equally competitive
performance of around 93 percent compared with that
when using 50 percent of training data. Moreover, the per-
formance keeps increasing given more training data. These
results verify the scalability of our model on large-scale
real-world social media datasets.

Convergence Analysis. We further investigate the conver-
gence of the learning algorithm for FGM, and Fig. 4c
presents the F1-score with increasing number of iterations.
We see that the algorithm converges within around 2,000
iterations, which is rapid enough for us to conduct efficient
model training on large scale datasets in practice.11. http://scikit-learn.org
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Impact of Size of Network. Size of network is a critical issue
in setting up DNNmodel. Shallow networks result in trivial
model that cannot catch any underlying correlation in data,
whereas too deep networks lead to over-complex model
which is difficult to tune and may suffer from problems like
over-fitting. To choose an appropriate DNN model for clas-
sification, we test DNN with different number of layers.
Fig. 4d summarizes the experiment results. It is clear that 2-
layer is not sufficient for the model to achieve a satisfactory
result. 3-layer model improve significantly while 4-layer
model reaches the peak. 5-layer model does not get better
result. This is mainly because at 5-layer the network may be
too large that it cannot be tuned well with the available data
and within a feasible training time.

Attribute Contribution Analysis. As described in Section 4,
we have defined several set of tweet-level and user-level
attributes from a single tweet’s content as well as users’
posting behaviors and social interactions in a weekly
period. To evaluate the contribution of different attributes
and compare the effectiveness of our model of leveraging
different attributes, we compared the proposed model with
other existing models by using different combinations of
attributes as input. As described in Section 4, the proposed
attributes are categorized into four groups: tweet-level
attributes, user-level posting behavior attributes, user-level
social interaction content attributes and user-level social
interaction structure attributes, denoted as T, UPB, UIC,
and UIS respectively. We compare the detection perfor-
mance of the proposed CNN+FGM model with SVM and
CNN with traditional autoencoder, with all the possible
combinations of these four set of attributes. For the SVM
with the tweet-level attributes, we simply take the average
of the feature vectors from a user’s weekly tweets.

The results of this experiment are shown in Fig. 5. We see
that all the models achieve the best detection performance
when utilizing all the three set of attributes. When using
only the tweet-level features, the detection performance of
the proposed model and the DNN model drops to around
86 and 82 percent respectively in F1-score, which is accept-
able. While for SVM, the detection performance drops to

around only 70 percent, which is poor for a binary classifica-
tion. This result demonstrates the effectiveness of the fea-
ture aggregation of CNN, which is much better than simply
summarizing the feature vectors manually.

Fig. 5 also shows the effectiveness of different attributes.
We can see that by using only user-level attributes, the detec-
tion performance of all the models drops drastically com-
pared to that using only tweet-level attributes, which shows
the importance of the tweet-level attributes. By combing dif-
ferent types of user-level attributes, the detection performance
improves by around 3-8 percent in F1-score, showing that the
user-level attributes are supplementary to each other. Mean-
while, by combining the user-level attributes with tweet-level
attributes, the detection performance improves up to 10-20
percent in F1-score. This result indicates that the user-level
attributes are great supplements to tweet-level attributes.

When using only two set of attributes, the detection perfor-
mance drops to around 91 percent in F1-score. In case of using
sole attributes, we see that using solely user-level social inter-
action attributes gets the best detection performance of
around 90 percent in F1-score, as compared to the other attrib-
utes. This reveals that the proposed user-level social interac-
tion attributes are quite effective for stress detection.

Impact of Different Modalities in Content Attributes. Tweets
content come with multiple modalities. To evaluate the con-
tribution of each data modality, we conduct experiments
with different combination of attributes. Since text is the
necessary part of a tweet, we test using solely text attributes,
and the two combinations of text and visual attributes, and
text and social attributes, as well as using all attributes. The
results are shown in Table 6. It is interesting to note that
using only text attribute could achieve rather high perfor-
mance. Simply combining visual or social attributes with
text attributes may even reduce the performance, especially
the social attributes. This trend is even more obvious when
both types of attributes (content and posting behavior) are
used. Nevertheless, using all attributes together outper-
forms that using only the text attributes; and the highest
performance is observed when using all attribute and work-
ing with both types of attributes.

6.4 Results on Other Datasets
We further evaluate our model on other datasets, DB2-DB4,
as shown in Table 4, to show that our model is universally
applicable. For these experiments, we use all the proposed
attributes with MOT pooling, and a 4-layer DNNmodel.

DB2 from Sina Weibo with PSTR Label. We use a matured
model trained with large scale Sina Weibo dataset, and then
test it against another set of subject independently sampled
from Sina Weibo. For the test set, we collect weekly tweets
from the users that have shared the score of a psychological

Fig. 4. Experiment results analysis from various perspectives. (a) Attribute contribution analysis. (b) Factor contribution analysis. (c) Results of
detection performance with different training data scales. (d) Convergence analysis of FGM.

TABLE 5
Comparison of Efficiency and Effectiveness Using

Different Models (%)

Method Acc. Rec. Prec. F1 CPU time

LRC 76.18 87.94 78.58 83.00 39.43 s
SVM 72.58 87.39 75.16 80.82 
10 min
RF 77.73 89.63 79.35 84.18 67.71 s
GBDT 79.75 82.99 85.90 84.43 262.86 s
FGM 91.55 96.56 90.44 93.40 
20 min
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stress scale with 50 items via Sina Weibo. Detection result
shows that the test accuracy is 84.26 percent and F1-score is
0.8785, which demonstrates that the overall model is consis-
tent and the sentence pattern based ground truth labeling
method is reliable.

DB3 from Tencent Weibo. We test on data collected from
another major Chinese social media platform. For this test,
we use the attribute extractor trained with large scale Sina
Weibo dataset and only finetune the network with Twitter
dataset in 5-fold. The accuracy is 86.18 percent and F1-score
is 0.8832 which demonstrate the capability of the model.

DB4 from Twitter. We also test against the Twitter dataset.
We still use the attribute extractor trained with large scale
SinaWeibo dataset and only finetune the network with Twit-
ter dataset in 5-fold. The accuracy is 77.43 percent and F1-
score is 0.8224. One reason for this modest result is that users
in Twitter dataset and Sina Weibo dataset come from differ-
ent language and culture background, so that the language
patterns and sentimental signals from these two different
language environments can be different, thus the attribute
extractor trained with large scale SinaWeibo dataset may not
be fully functional for Twitter datasets. Nevertheless, we still
achieved acceptable performance in Twitter dataset, which
implies that the basic stress patterns between social relations
can be transferred in between different language environ-
ments. Another factor could be that the scale of this dataset is
rather small. Subjects in the Twitter dataset are on the order
of 10 percent than that in large-scale Sina Weibo dataset. We
look into the collected data and find that, by coincidence, all
tweets in this dataset have no social activity. We conjecture
this is also one of the causes of the unsatisfactory result.

7 STUDIES OF SOCIAL INTERACTION

We have presented the experimental results on stress detec-
tion in the previous section, while in the setting of social net-
works, it would be helpful to further analyze how a user’s
stress status is developed and how they affect each other.
To do so, we try to conduct several studies on DB1 to offer
insights on how social interactions contribute to user stress
and the task of stress detection from the following aspects:

(1) Content. How are users’ social interaction contents (e.g.,
language used) related to users’ stress states?

(2) Structure. Compared to non-stressed users, do stressed
users show different structural diversity patterns when they
behave in social networks?Do differences of social influence and
strong/weak ties exist between stressed and non-stressed users?

7.1 Content
Content of social interaction refers to the content of tweets’
comments and retweets, including text, emoticons, and
punctuation marks. Based on a widely used psychological
dictionary LIWC2007 [40], we extract emotional words from
the interaction content of tweets, and categorize the extracted
words into corresponding groups defined in LIWC2007.
We compare the frequencies of different word categories
between stressed and non-stressed users.

Fig. 6 shows the comparison results of the most widely
used word categories in our data set, we observe that there is
an obvious difference in interaction contents between stressed
and non-stressed users. That is, interaction contents of
stressed users’ tweets contains much more words from cate-
gories like death, sadness, anxiety, anger, and negative emo-
tion, while non-stressed users’ tweets contain more words
fromcategories like friends, family, affection, leisure, and pos-
itive emotion.

7.2 Structure
To examine structure properties (i.e., social influence and
strong/weak tie) of (non)stressed users, we use risk ratio
(RR) to measure the correlation between users’ stress states
and different structural attributes. Risk ratio is an effective
measurement widely used in the statistical analysis and rel-
evant fields. The risk ratio of a stressed state, associated
with a structural attribute a, is calculated as follows:

RRðaÞ ¼ P ðstressed user has attribute aÞ
P ðstressed user does not have attribute aÞ : (11)

A larger risk ratio implies that users with attribute a are more
likely to be stressed. In this section, we investigate representa-
tive sociology theories, and quantitatively analyze the correla-
tions between users’ stress states and fundamental social
concepts, so as to examine how andwhy a user’s stress state is
developed and affected by other users.

7.2.1 Structural Diversity

We are interested in whether stressed and non-stressed
users have any structural difference in respective friends’
connection. In sociology, social structure refers to a society’s
framework, consisting of various relationships among peo-
ple, as well as groups that direct and set limits on human
behaviors. In social networks, direct connections (following
or followed) of users that interact with each other via com-
ments and retweets also form a kind of social structure. For
this in-depth study, we select top four users with the most
frequent interactions from users’ weekly tweet postings,
where four is adopted because this is the minimum number
of nodes required to produce structural combinations
(10 combinations), so as to calculate the probability of each
combination, and incorporating more nodes would make
the calculation combinatorial expensive. We measure the
connection of the interacting users by the following link, that
is, if A is following or followed by B, then A and B are con-
nected, and cliques made up of different nodes are treated

TABLE 6
Comparison of Results Using Different Modalities

Text Text + visual Text + Social All

Accuracy 0.8713 0.8761 0.8628 0.9155
F1-score 0.8794 0.8865 0.8711 0.9340

Fig. 5. Experiment results analysis of different attribute combinations on
different models, with T, UPB, UIC, and UIS representing tweet-level
attributes, user-level posting behavior attributes, user-level social Inter-
action content attributes and user-level social Interaction Structure
attributes respectively. For example, ‘UIC+UIS’ here means a combina-
tion of user-level social Interaction content attributes and user-level
social interaction structure attributes.
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the same. We compare the proportion of different social
structures of interacting users to measure the structural
diversity. The results in Fig. 7 clearly show us that structural
differences do exist between stressed and non-stressed users.
The number of social structures of sparse connection (i.e.,
with no delta connections) of stressed users is around 14 per-
cent higher than that of non-stressed users, indicating that
the social structure of stressed users’ friends tends to be less
connected and less complicated, compared to that of non-
stressed users. This phenomenon has also been reported by
the current psychological research result that stressed users
are more likely to be socially less active [7].

7.2.2 Social Influence

Social influence is an important factor that governs the
dynamics of social networks. The principle of social influ-
ence [22] suggests that users tend to change their behav-
iors to match their friends’ behaviors. In this study, we
try to examine whether users’ stress states will be influ-
enced by their neighbors’ states by looking at the proba-
bility of a user’s stress state when he/she has different
types of relationships with other stressed users. As for
the stress state labeling, all users including friends are
labeled using the sentence pattern method described in
previous section.

Fig. 8a shows the probability that a user being stressed,
conditioned on the number of stressed neighbors that the user
has in the social network. We can see that being stressed is a
mutually correlated behavior. In particular, the chance that a
none-stressed user becoming stressed increases to three times
higher for those with stressed neighbors than for those with-
out. Another trend observed from Fig. 8a is that the likelihood

of a user becoming stressed increases with the number of
stressed neighbors.

7.2.3 Strong/Weak Tie

Strong/Weak Tie [17] is one of the most basic principles in
social network theories. We classify the constructed social
relationships into strong or weak ties by the number of
times that two users interact with each other via comment,
@-mention, retweet, or like in a week. In our work, we tried
different values for the threshold and finally chose three by
cross-validation. If two users interact with each other more
than three times, we call the relationship a strong tie, and
otherwise a weak tie. This definition of user ties is adopted
as the standard treatment in the research of social network
analysis [17], so as to capture the most recent user relation-
ships in a shifting environment. Fig. 8b illustrates the
results. We can see that strong ties indeed have strong influ-
ence on users’ stress states, and the influence of weak ties is
relatively weak. For example, when a user has three stressed
strong-tie connections, the probability that the user will
become stressed increases to 13 percent, more than twice as
high as for a user with three stressed weak-tie connections.

Summary. Based on the experimental results and analyses
we know that: 1) users’ stress states are not only revealed in
their own tweets, but also affected by the contents of their
social interactions, including commenting on and re-tweet-
ing others’ tweets; and 2) users’ stress states are revealed by
the structure of their social interactions, including structural
diversity, social influence, and strong/weak ties. These
insights quantitatively prove the necessity and effectiveness
of combining social interactions for stress detection.

8 CONCLUSION

In this paper, we presented a framework for detecting
users’ psychological stress states from users’ weekly social
media data, leveraging tweets’ content as well as users’
social interactions. Employing real-world social media data
as the basis, we studied the correlation between user’ psy-
chological stress states and their social interaction behav-
iors. To fully leverage both content and social interaction
information of users’ tweets, we proposed a hybrid model
which combines the factor graph model (FGM) with a con-
volutional neural network (CNN).

In this work, we also discovered several intriguing phe-
nomena of stress. We found that the number of social struc-
tures of sparse connection (i.e., with no delta connections)
of stressed users is around 14 percent higher than that of
non-stressed users, indicating that the social structure of
stressed users’ friends tend to be less connected and less

Fig. 7. Distribution of stress states (stressed and non-stressed) over dif-
ferent social structures. The dot represents a friend of the user, and the
line represents the connection of friends.

Fig. 6. Distribution of stress states (stressed and non-stressed) over dif-
ferent word categories from tweets’ comments and retweets. Here, we
show 10 most widely used word categories in our data set.

Fig. 8. Social influence and Social tie analysis. (a) Variation trend of
probability of a user being stressed when she/he has different number
of stressed neighbors. (b) Variation trend of probability of a user being
stressed when she/he has different number of stressed neighbors with
strong/weak ties.
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complicated than that of non-stressed users. These phenom-
ena could be useful references for future related studies.
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