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CONNA: Addressing Name Disambiguation
on The Fly

Bo Chen, Jing Zhang*, Jie Tang,Senior Member, IEEE , Lingfan Cai,
Zhaoyu Wang, Shu Zhao, Hong Chen, Cuiping Li

Abstract— Name disambiguation is a key and also a very tough problem in many online systems such as social search and
academic search. Despite considerable research, a critical issue that has not been systematically studied is disambiguation
on the fly — to complete the disambiguation in the real-time. This is very challenging, as the disambiguation algorithm must be
accurate, efficient, and error tolerance. In this paper, we propose a novel framework — CONNA — to train a matching component
and a decision component jointly via reinforcement learning. The matching component is responsible for finding the top matched
candidate for the given paper, and the decision component is responsible for deciding on assigning the top matched person or
creating a new person. The two components are intertwined and can be bootstrapped via jointly training. Empirically, we evaluate
CONNA on two name disambiguation datasets. Experimental results show that the proposed framework can achieve a 1.21%-
19.84% improvement on F1-score using joint training of the matching and the decision components. The proposed CONNA has
been successfully deployed on AMiner — a large online academic search system.

Index Terms—Name disambiguation, Joint model, Multi-field multi-instance
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1 INTRODUCTION

Name disambiguation, aiming at disambiguating who is
who, is one of the fundamental problems of the online aca-
demic network platforms such as Google Scholar, Microsoft
Academic and AMiner. The problem has been extensively
studied for decades [9], [13], [21], [35], [40], [42], [47]
and most of the works focus on how to group the papers
belonging to same persons together into a cluster from
scratch. However, online academic systems have already
maintained a huge number of person profiles, which are
made by the “from scratch” algorithms or human beings.
Out of the consideration of the computation and time cost
of the real systems, it is not practical to re-compute the
clusters from scratch for the new arriving papers every day.
We need a more effective way to deal with the problem of
name disambiguation on the fly.

This paper takes AMiner as the basis to explain how
we deal with the name ambiguity problem when con-
tinuously updating persons’ profiles. AMiner is a free
online academic search and mining system [37], which has
already extracted 133,204,120 researchers’ profiles from
the Web [36] and integrated with 263,781,570 papers from
heterogeneous publication databases [47]. Currently, the
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Fig. 1. Disambiguation on the fly. Given a target paper
with target author as “Yang Yang”, we aim at searching
for the right person of “Yang Yang” from the candidates,
where the right person can be a real person or a non-
existing candidate denoted as NIL.

newly arrived papers of AMiner are more than 500,000 per
month. How to correctly assign these papers to the right
persons in the system on the fly is a critical problem for
many upper applications such as expert finding, academic
evaluation, reviewer recommendation and so on.

Existing methods on addressing the similar problem
of anonymous author identification [2], [46] are possible
solutions to continuously disambiguating papers on the fly.
However, they merely target at finding the top matched
person from all the candidates, but fail to deal with the
situation when no right person exists, which is common in
real academic systems. For example, the papers published
by new researchers should not be assigned to any persons,
as their profiles have not been established by the system.
Thus, to assign a paper on the fly, we need to pay attention
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to not only find the top matched candidate, but also identify
whether to assign the top matched candidate or create
a new person. In other words, we consider the absence
of the right person from the candidates to be a distinct
candidate, the so-called NIL candidate. Figure 1 illustrates
the problem to be solved in the paper, where given a paper
with an author to be disambiguated, the returned right
person can be a real person or a non-existing candidate
denoted as NIL. Actually, in AMiner, in addition to the
“on-the-fly” assignment, we also perform a “from scratch”
algorithm to cluster “NIL” papers into new profiles, and
run an offline “checking” algorithm to correct errors from
historical profiles periodically. In general, AMiner performs
a multi-strategy combining “from scratch”, “on-the-fly” and
“checking” together to solve the complex continuous name
disambiguation problem. In this paper, we only introduce
the principle of “on-the-fly” strategy under the assumption
that the previously built profiles are correct, where the
errors of the profiles are left to the “checking” strategy.

To tackle the problem, we first investigate how to find
the top matched candidate for a given target paper. Straight-
forwardly, we can use the traditional feature-engineering
methods to estimate the matching probability between each
candidate and the target paper, and then return the top
matched candidate. However, these methods are devoted
to exactly matching the tokens between a paper and a
person, which is too rigid and cannot handle the cases
with similar semantics but different tokens. The widely
used representation-based models [2], [46] can capture the
soft/semantic matches through learning low-dimensional
dense embeddings, but they may contrarily hurt the per-
formance of exact matching due to the highly compressed
embeddings. For example in Figure 1, if only depending
on the semantics of learned embeddings, we can infer that
both of the candidates are interested in social network
mining. However, it is apparent that the exact matches of
the coauthor names or words, e.g., “Jie Tang”, “Juanzi Li”,
“social”, “network” between the target paper and the right
person are more than those of the wrong person. Thus, a
challenge is posed: how to capture both the exact matches
and the soft matches in a principled way? Simultaneously,
the effects of different fields are different. For example,
the two matched coauthors in the right person make it
significantly more confident than the wrong person with
only one matched coauthor, compared with the matches in
other fields. Besides, each person publishes multiple papers,
which also take different effects. For example in Figure 1,
in the papers of the right person, the effect of the second
similar paper may be diluted by the first irrelevant one if
combining all papers. Thus, an effective way to distinguish
the effects of different fields of the attributes and different
instances of the published papers is worth studying.

After obtaining the top matched candidate, we need to
decide whether to assign the top matched candidate or
NIL candidate to the target paper. The NIL problem is
widely studied in entity linking, a similar problem that
aims at linking the mentions extracted from the unstructured
text to the right entities in a knowledge graph. We can

adopt the similar idea to assign the NIL candidate to a
target paper if the score of the top matched person is
smaller than a NIL threshold [8], [32] or if the top matched
person is predicted as NIL by an additional classifier [27].
Essentially, the first process of finding the top matched
candidate tries to keep the relative distances between the
right and the wrong persons of each target paper, and the
later process of assigning the top matched candidate or
not devotes to optimize the absolute positions among top
matched candidates of all target papers. Intuitively, the two
processes can influence each other, and the errors of each
process can be corrected by their interactions. However,
none of the existing NIL solutions are aware of this and it
is not clear how to correct the errors by the interactions
between the two processes.

To this end, in AMiner, we propose a joint model
CONNA that consists of a matching component and a
decision component to solve CONtinuous Name Ambiguity,
i.e., name disambiguation on the fly, where “on the fly”
emphasizes the solved problem in the paper is different
from name disambiguation “from scratch”. In the model,
the matching component adopts an interaction-based deep
learning model plus a kernel pooling strategy to capture
both the exact and soft matches between a target paper
and a candidate person and also a multi-field multi-instance
strategy to distinguish the effects of different attributes and
different instances of papers. The decision component is
trained on the similarity embeddings learned by the match-
ing component, to further decide whether a top matched
person is the right person or not. In addition, the errors of
the proposed model can be self-corrected through jointly
fine-tune the two components by reinforcement learning.
To summarize, the main contributions include:
• We propose CONNA consisting of a multi-field multi-

instance interaction-based matching component and a
decision component to address the problem of con-
tinuous name disambiguation. With jointly fine-tuning
of the two components by reinforcement learning, the
errors of the two components can be self-corrected.

• Experimental results on two large name disambigua-
tion datasets show that CONNA compares favorably
decision accuracy (+1.21%-19.84% in terms of F1)
and matching accuracy (+ 3.80%-49.90% in terms of
HR@1) against the baselines methods. CONNA is
deployed on AMiner to assign papers on the fly now.

2 PROBLEM FORMULATION

We introduce the definitions and the problem in this section.
Definition 1: Paper. We denote a paper as p associated

with multiple fields of attributes, i.e., p = {A1, · · · , AF },
where Af ∈ p represents the f -th attribute such as authors’
names and affiliations, title, keywords, venue and so on.

Definition 2: Target paper-author pair. Given a paper
p with one of its authors denoted by a, we define a target
paper-author pair as 〈p, a〉, where p is the target paper and
a is the target author to be disambiguated. We abbreviate
a target paper-author pair as a target pair henceforth.
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Fig. 2. Distribution of the same-coauthor ratio and
the corresponding matching performance. Yellow bar:
Distribution of the same-coauthor ratio of the target pairs.
Lines: HR@1 performances of different methods.

Definition 3: Candidate Persons. Given a target pair
〈p, a〉, the corresponding candidate persons C are those
who are closely related to the target pair 〈p, a〉. Each can-
didate person cl ∈ C is composed of multiple papers, i.e.,
cl = {p1, · · · , pnl

}, where each paper pt = {A1, · · · , AF }
and nl is the number of papers published by cl.

For a target pair 〈p, a〉, to find the right person from its
candidate persons C, a straightforward way is to compare
the coauthors’ names of a in p with the coauthors’ names
of each candidate person in C1. The assumption is the
more overlaps between the coauthors’ names, the more
likely the candidate is the right author of p. The similar
idea is adopted in [20], which found that if only using
the users’ names, 56% same users with different accounts
across the social networks can be correctly linked together.
However, how can the names take effect in identifying the
right person for the target pairs?

To answer the question, we collect 100,000 target pairs
from AMiner. For each target pair 〈p, a〉, we collect its
candidate persons (Cf. Section 3.1 for candidate generation
details) and calculate the same-coauthor ratio:

Same-coauthor ratio =
max
c∈C

Sc − second
c∈C

Sc

max
c∈C

Sc −min
c∈C

Sc
, (1)

where Sc is the number of the same coauthors of a in
p with the candidate c. Same-coauthor ratio reflects the
gap between the most similar candidate and the second
similar candidate. The denominator is to normalize the gap
calculated for different candidate lists into the same scale.
It will be easier to distinguish the right person from the
other candidates when the same-coauthor ratio is larger.

Then we plot the distribution of the same-coauthor ratio
for all the target pairs in Figure 2, where X-axis indicates

1. The names are treated as strings to be compared with each other.

the same-coauthor ratio of a target pair, and Y-axis on
the left denotes the proportion of the target pairs with a
certain same-coauthor ratio. From the figure, we can see
that although 62.72% target pairs have large same-coauthor
ratios, there are still 14.59% target pairs having small same-
coauthor ratios. The coauthor-related features will hardly
take effect when dealing with the target pairs with small
same-coauthor ratios. For these target pairs, it is also not
easy to leverage other features except the coauthor features.

To verify the above hypothesis, we estimate the proba-
bility of matching each candidate person to the target pair
by GBDT based on several features such as the literal
similarities between the title, venue, or the affiliations of
the target pair and those of a candidate person besides
the coauthor-related features, then evaluate whether the top
matched candidate is the right person or not and show the
evaluated metric, top 1 Hit Ratio (i.e., HR@1 on the right
Y-axis) for different ranges of the same-coauthor ratio in
Figure 2. Clearly, we can see that the performance of GBDT
decreases dramatically with the decrease of the same-
coauthor ratio. The evaluated HR@1 is 66.71% when the
same-coauthor ratio is within (0, 0.1), but is 96.40% within
(0.9,1.0). The results indicate that when the coauthors of
the target pair and the right person are not similar, it is
also difficult for feature-engineering methods to capture the
similarities of other attributes. Thus, a more promising way
to match each candidate with the target pair is required.

In addition to find the top matched candidate, we also
need to consider the situation when no right person exists,
which is usually ignored by existing author identification
tasks [2], [46]. Suppose an academic system establishes a
profile for a researcher only if she/he has published at least
one paper, a lot of papers written by the new researchers
who publish papers for the first time, cannot be assigned to
any existing person in the system. Thus, the right person
should be either a real person or a non-existing person. In
summary, the problem is defined as:

Problem 1: Disambiguation on the fly. Given a training
set D = {(〈p, a〉, C)}, for each target paper-author pair
〈p, a〉 and the corresponding candidate persons C, the right
person c∗ can be either a real person in C denoted by c+ or
a non-existing person denoted by NIL, and other persons
except c∗ in C are the wrong persons denoted by {c−}.
The target is to learn a predictive function

F : {(〈p, a〉, C)} → {c∗} (2)

to assign a target paper-author pair to its right person.
In our problem, a is usually used to select candidate

persons and p is used to extract features to match the can-
didates. To simplify the problem, we assume the historical
papers assigned to the candidates are correct. However,
historical errors cannot be avoided. Thus, we design an
independent model to check and correct the historical
assignments repeatedly. The study is left in the future.

3 CONNA
In this section, we first give an overview of the end-to-
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end framework and then introduce the matching component
which is to match the most possible candidate to the target
pair and the decision component which is to decide whether
to assign the top matched candidate to the target pair or not
respectively. Finally, we introduce how to self-correct the
errors of the two components by jointly fine-tuning them
through reinforcement learning.

3.1 Overview

At first, given a target pair 〈p, a〉, the candidate persons C
are the persons having the relevant names with the target
author a. We define the relevant names as simple variants
of a’s name, including moving the last name to the first and
keeping the initials of the names except for the last name.
For example, the variants of “Jing Zhang” include “Zhang
Jing”, “J Zhang” and “Z Jing”. For annotating a dataset for
training and evaluating the models of name disambiguation,
this simple candidate generation strategy can already result
in enough challenging candidates.

The whole process of name disambiguation is divided
into offline training and online predicting, which is shown
in Figure 3. During the offline training process, we firstly
train a matching component to estimate the probability
of matching each candidate to the target pair and make
the matching probability of the right person higher than
those of the wrong persons for each target pair. The
matching component constructs the training data from D =
{(〈p, a〉, C)} as a set of triplets Dr = {(〈p, a〉, c+, c−)},
where 〈p, a〉 is the target paper-author pair, c+ is the real
right person and c− is a wrong person from the candidates.
The objective is to make 〈p, a〉 closer to c+ than to c−.
Then, we train a decision component to accept each sample
(〈p, a〉, Ĉ) ∈ D̂ as the input and output a label ŷ for the top
matched person ĉ ∈ Ĉ, where Ĉ is ranked by the trained
matching component, ŷ = 1 indicates ĉ is the right person
and ŷ = 0 indicates ĉ is the wrong person. We construct the
training data Dc for the decision component by extracting
(〈p, a〉, c+) as the positive instance (i.e., y = 1) and
(〈p, a〉, ĉ−) as the negative instance (i.e., y = 0) from each
sample (〈p, a〉, Ĉ), where ĉ− indicates the top matched
wrong person in C. Finally, we fine-tune the matching
component based on the feedback (i.e., error cases) of
the decision component, and then fine-tune the decision
component based on the updated output of the matching
component. Essentially, the matching component tries to
keep the relative distances between the right and the wrong
persons of each target pair, and the decision component
devotes to optimize the absolute positions between the
top matched persons of all the target pairs found by the
matching component.

During the online predicting process, to disambiguate
a target pair 〈p, a〉, the matching component firstly finds
out the top matched candidate person ĉ, then based on
the similarity features φ(〈p, a〉, ĉ) output by the matching
component, the decision component will predict the label
ŷ for ĉ and finally assign the person c∗ to 〈p, a〉, where
c∗ = ĉ if ŷ = 1 and c∗ = NIL otherwise.

Fig. 3. The whole framework of training and predicting.

3.2 Matching

Basic Profile Model (BP). Let’s imagine how humans
assign a paper to a person. The humans usually browse all
the papers published by the person to understand her/his
affiliation, overall research interest, and frequently collab-
orated authors, then comparing them with those of the
paper. In other words, humans directly compare the person’s
profile with the target pair, which can guide us to build our
model. Thus, we name the model as the basic profile model.
Specifically, we merge all the attributes of a paper and
divide them into a set of tokens to represent the paper, and
then merge the tokens of all the papers of a person into a
unified set of tokens to represent the person’s profile. Based
on the token-based representations of the target paper and
the person, we can estimate the similarity between them.
Note a complete author name or a word in titles, keywords,
venues and affiliations is viewed as a token.

Some metrics such as Jaccards Coefficient [30] and
cosine similarity [30] can easily capture the exact matches.
However, they suffer from the sparsity of the token-based
representations. For example, the similarity is zero if two
representations do not contain any same tokens, even if
they are semantically similar. On the other hand, recently,
some representation-based models [12], [14] can success-
fully capture the soft/semantic similarities, as they embed
the high-dimensional sparse features into low-dimensional
dense representations. Through training on the labeled data,
the model can reduce the distance between the semantically
similar inputs in the low-dimensional space. However,
these models may suffer from the problem of semantic
drift. For example, two token-based representations with
many overlapped tokens may become dissimilar after being
embedded by the model, as the global representation may
dilute the effect of the exact same tokens by other different
tokens. In summary, the above two types of methods are
good at either exact matching or soft matching. To capture
both the exact and soft matches, we adopt the interaction-
based models [5], [12], [43] widely used in information re-
trieval. The interaction-based models first build a similarity
matrix between each candidate person and the target pair
and then apply an aggregation function to extract features
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Fig. 4. The basic profile model.

from the matrix. These models avoid learning the global
representations, thus can reduce the issue of semantic drift.

Similarity Matrix. We represent the matches between
each candidate and the target pair as a similarity matrix
S, with each element Sij standing for the basic interaction,
i.e., the cosine similarity Sij =

pi·cj

||pi||·||ci|| between pi and
cj , where pi represents the embedding of the i-th token
in the target pair 〈p, a〉 and cj represents the embedding
of the j-th token in the candidate person c, which can be
pre-trained by Word2Vec [23], [18] or BERT [6].

Aggregation Function. For sentence matching, CNN [12],
[25] and RNN [39] are widely used as aggregation functions
to extract matching patterns from the similarity matrix.
However, different from sentence matching, title, keywords,
venue and affiliation are all short text. We need to pay
more attention to the occurrence of the exact same or
semantically similar tokens. Thus we adopt an RBF kernel
aggregation function [43] to extract features. Specifically,
the i-th row Si = {Si0, · · · , SiM} of the similarity matrix
— the similarities between the i-th token of the target pair
and each token of the candidate person, is transformed
into a feature vector K(Si), with each of the k-th element
Kk(Si) being converted by the k-th RBF kernel with mean
µk and variance σk. Then the feature vectors of all the
tokens in the target pair are summed up into the final
similarity embedding φ(〈p, a〉, c), i.e.,

φ(〈p, a〉, c) =

N∑
i=1

logK(Si), (3)

K(Si) = {K1(Si), · · · ,KK(Si)}, (4)

Kk(Si) =

M∑
j=1

exp

[
− (Sij − µk)2

2σ2
k

]
. (5)

The kernel with µ = 1 and σ → 0 only considers
the exact matches between tokens, and others, e.g., with
µ = 0.5, counts the number of tokens in the candidate
person whose similarities to a queried token in the target
paper are close to 0.5. Thus, the kernel aggregation not only
emphasizes the effect of exact matching but also captures
the soft matches. Figure 4 illustrates the model.

Multi-field Profile Model (MFP). The basic profile model
does not distinguish different fields of attributes but groups
them together. However, it is not necessary to compare

Fig. 5. The multi-field profile model.

different attributes, such as comparing authors with venues.
Moreover, it takes more effect to compare coauthor names
than other attributes. So we build a basic profile model
on each field of the attributes respectively, i.e. different
attributes are not allowed to be compared, then aggregate
the similarity embeddings together by the corresponding
attention coefficients estimated by:

αf =
exp(wφ(Ap

f , A
c
f ) + b)∑

f exp(wφ(Ap
f , A

c
f ) + b)

, (6)

φ(〈p, a〉, c) =
∑
f

αfφ(Ap
f , A

c
f ),

where φ(Ap
f , A

c
f ) denotes the similarity embedding be-

tween Ap
f and Ac

f with Ap
f being the f -th field of p and

Ac
f being that of the candidate person c. Notations w and b

denote the parameters. The model is named as multi-field
profile model and is shown in Figure 5.

Multi-field Multi-instance Model (MFMI). A person
usually publishes multiple papers. Some persons even pub-
lish papers of multiple topics on multiple fields of venues
and collaborate with multiple communities of persons.
In this scenario, a target paper can be only similar to
a small part of a person’s diverse profile, but is totally
irrelevant to other parts of the profile. However, the multi-
field profile model may dilute the similarity with this small
part when summing the similarities with all the tokens
in a person’s profile together by Eq.(5). To reduce the
impact from the irrelevant papers, we build a multi-field
model between the target pair and each published paper
of the candidate person, and then aggregate the resultant
similarity embeddings of all the published papers by their
corresponding attention coefficients, which are estimated
the same as Eq.(6). The model is named as the multi-field
multi-instance model and is shown in Figure 6.

The Combination Model (CONNAr). Essentially, the
multi-field profile model captures the global similarities be-
tween the target pair and a person’s profile, while the multi-
field multi-instance model considers the local similarities
between the target pair and each of the papers published
by a person. Both of them can be explained intuitively, thus
we can combine their output similarity embeddings together
as the final feature embedding. We summarize different
component variants in Table 1.
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Fig. 6. The multi-field multi-instance model.

Loss Function. We use the triplet loss function to optimize
the matching component. Similar ideas has been also used
in [2], [46], [47]. Let Dr be a set of triplets with each
triplet denoted as (〈p, a〉, c+, c−), where c+ is the right
person of the target pair 〈p, a〉 and c− is a wrong person
sampled from the candidates, the triplet loss function L(Θ)
is defined as:

L(Θ) =
∑

(〈p,a〉,c+,c−)∈Dr

LΘ(〈p, a〉, c+, c−) (7)

=
∑

(〈p,a〉,c+,c−)∈Dr

max{0, g(φ(〈p, a〉, c−))− g(φ(〈p, a〉, c+)) +m)},

where g is defined to be a non-linear function to transform
the similarity embedding φ into a one-dimension matching
score that can be compared between the positive pair
(〈p, a〉, c+) and the negative pair (〈p, a〉, c−). Notation Θ
indicates the parameter of the matching component and
m > 0 is a margin enforcing a distance between positive
pairs and negative pairs. We optimize the triplet loss instead
of directly optimizing the cross-entropy loss between the
output matching score and the true label, as we aim at
finding the top matched candidate from all the candidates
for each target pair, thus the objective should be keeping
a relative order within the candidate persons of each target
pair instead of keeping a global order among all the (p, c)
pairs. The triplet loss is more direct and close to our
objective than the cross-entropy loss.

3.3 Decision
The decision component is built upon the output of the
matching component to identify the right person, who
can be either the top matched real person or NIL. The
candidate persons C of each sample (〈p, a〉, C) ∈ D are
ranked into Ĉ based on the matching probabilities estimated
by the matching component. Note for the samples with
c∗ = c+, the real right person c+ may be ranked the first
or not. Then the decision component is trained to predict
the first ranked person ĉ ∈ Ĉ to be a right person (i.e.,
ŷ = 1) or a wrong person (i.e., ŷ = 0). To achieve the
goal, we construct the training data Dc from the ranked
dataset D̂ = {(〈p, a〉, Ĉ)}. Specifically, from each sample
(〈p, a〉, Ĉ), we extract (〈p, a〉, c+) as the positive instance
(i.e., y = 1) and extract (〈p, a〉, ĉ−) as the negative instance
(i.e., y = 0), where ĉ− indicates the first ranked wrong
person in C. In another words, the positive instances are
only extracted from the samples with c∗ = c+, while the

TABLE 1
Matching component variants of CONNA.

Component variants Key idea

Basic Profile (BP) The basic interaction-based model
Multi-field Profile (MFP) Build BP for each field
Multi-field Multi-instance (MFMI) Build MFP for each instance
CONNAr Combine MFP and MFMI

negative instances are extracted from both the samples with
c∗ = c+ and the samples with c∗ = NIL. For an instance
(〈p, a〉, c), we use the similarity embedding φ(〈p, a〉, c)
output by the matching component as its feature. Thus,
Dc = {(φ(〈p, a〉, c+), y = 1)} ∪ {(φ(〈p, a〉, ĉ−), y = 0)}.
Then we train a multi-layer perceptron h(Φ):

h(Φ) : {φ(〈p, a〉, c)} → {y}, (8)

where y is the label of the instance (〈p, a〉, c), whose value
equals 1 if (〈p, a〉, c) is a positive instance and 0 otherwise.

3.4 Reinforcement Self-correction
We finally fine-tune the two components by jointly training
them to correct their errors by themselves. The matching
component can be viewed as the generator to generate the
ranking list. Without the decision component, the triplet
loss in Eq.(7) is used to measure whether the ranking
list is good or not. However, as the final objective is to
determine whether the top ranked candidate is the right
person or not, the triplet loss is not enough to verify the
effect. Fortunately, we can use the prediction result of the
top ranked candidate by the decision component as the
delayed feedback to the ranking results of the matching
component. Specifically, we can punish the ranking list
with the wrongly predicted top candidate and reward the
ranking list with the correctly predicted top candidate. Then
based on the reward we update the matching component,
expecting the ranking lists generated by the matching
component to the decision component are more accurate.
Followed by the motivation, we propose fine-tuning the
two components via reinforcement learning. Specifically,
the objective is to maximize the expected reward of the
ranking lists generated by the matching component:

J(Θ) =
∑

(〈p,a〉,Ĉ))∈D̂

pΘ(〈p, a〉, Ĉ)R(y, ŷ), (9)

where D̂ is the ranked training data, pΘ(〈p, a〉, Ĉ) is the
probability of generating the ranking list Ĉ of the target
pair 〈p, a〉 by the matching component, and R(y, ŷ) is the
reward function defined as follows:

R(y, ŷ) =

{
1 ŷ = y;
0 otherwise. (10)

where ŷ is the predicted label for the top-ranked candidate
ĉ of Ĉ and y is the ground truth label. The defined reward
function encourages the matching component to float the
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Algorithm 1: Reinforcement Joint Training
Input: A training set D = {(〈p, a〉, C)}.
Output: A matching component and a decision component

parametrized by Θ and Φ respectively.
Build Dr = {(〈p, a〉, c+, c−)} from D;1
Pre-train Θ of the matching component on Dr;2

Rank D by the matching component to generate D̂;3

Build Dc = {(φ(〈p, a〉, c), y)} from D̂;4
Pre-train Φ of the decision component on Dc;5
repeat6

for (〈p, a〉, Ĉ) ∈ D̂ do7
Predict ŷ for ĉ by the decision component;8
Calculate R(y, ŷ) by Eq.(10);9
Calculate ∇ΘJ(Θ) by Eq.(11);10
Θ → Θ + µ∇ΘJ(Θ), where µ is the learning rate;11

Re-rank D to generate D̂ by the matching component;12

Re-generate Dc from D̂;13
Update Φ of the decision component on Dc;14

until Convergence;15

right person at the top and push the wrong person away
from the top. The policy gradient algorithm [34] is adopted
to optimize the expected reward in Eq.(9), whose gradient
is calculated as:

∇ΘJ(Θ) =
∑

(〈p,a〉,Ĉ)∈D̂

R(y, ŷ)∇pΘ(〈p, a〉, Ĉ),

'
∑

(〈p,a〉,ĉ,c−)∈Dr

R(y, ŷ)∇LΘ(〈p, a〉, ĉ, c−). (11)

Since the probability of a ranking list Ĉ is not easy
to be estimated, we transform Ĉ into a set of triplets,
with each triplet including the target pair 〈p, a〉, the top
ranked candidate ĉ ∈ Ĉ and a negative candidate c− ∈ Ĉ.
Then the loss of a triplet in Eq.(7) is calculated and the
losses of all the triplets are summed up to approximately
measure the ranking performance of Ĉ. Thus, the gradient
∇pΘ(〈p, a〉, Ĉ) is approximated by ∇L(〈p, a〉, ĉ, c−) of all
the triplets in Ĉ. Then the parameters Θ of the matching
component can be updated by the gradient. After the
matching component is tuned, the decision component is
also updated based on the updated similarity embeddings
output by the matching component. Algorithm 1 illustrates
the joint training process, where we firstly pre-train the
matching component and the decision component, and then
jointly fine-tune the two components together.

4 EXPERIMENT

All codes and data used in the paper are publicly available2.

4.1 Experimental Settings

4.1.1 Datasets

We evaluate CONNA on two name disambiguation datasets:

2. https://github.com/BoChen-Daniel/TKDE-2019-CONNA

OAG-WhoIsWho3: Is the largest human-annotated name
disambiguation dataset so far, which is consist of 608,363
papers belonging to 57,138 persons of 642 common names.
Existing work either leverage the disambiguating results by
algorithms in some well-known academic websites such
as Scopus [28] CiteSeerX [45], Web of Science [1] and
PubMed [38], or annotate a much smaller datasets by
human beings, such as 8,453 [9], 6,921 [15], 7,528 [35] and
2,946 annotated persons [24]. Compared to the most popu-
lar KDD Cup 2013 challenge dataset, the OAG-WhoIsWho
is also superior to it both in quantity (608,363 vs 424,384
in terms of the number of papers) and quality (fully human-
labeled vs partially human-labeled). We annotate the dataset
as follows. From the AMiner system, we choose 642
highly ambiguous names, create the relevant names by the
candidate generation strategy in Section 3.1 and select all
the authors for each name, collect all the papers assigned
for each author and extract title, authors, organizations,
keywords and abstract for each paper. We also collect all the
unassigned papers for each name from AMiner. Since the
assigned papers may be wrongly assigned and the papers
are not fully assigned, additional efforts are needed to
clean and reassign the papers. First, we clean the dataset
by removing the wrongly assigned papers or splitting the
papers of an author into different clusters. Second, we
annotate the unassigned papers or merge the papers of two
authors. We aim to clean the dataset as much as possible
but increase the highly reliable assignments. According
to the purpose, we only hire one annotator to perform
the cleaning step, but hire three annotators to perform
the assignment step respectively and then obtain the final
results by majority voting their annotations. Besides, an
annotation tool is developed to recommend highly reliable
removing, splitting, assigning or merging operations to the
annotators to simplify the human annotation process4.

KDD Cup [29]: Is the dataset used in the KDD Cup
2013 challenge 1 to address name disambiguation problem.
We collect the training data containing 3,739 authors and
123,447 papers, as only the training labels are published.
We only use title, organizations, keywords and abstract
as features, but ignore coauthor names. As shown in Fig-
ure 7(a), the distribution of same-coauthor ratio is extremely
skewed. According to Eq.(1), same-coauthor ratio equalling
1 means the second similar candidate and the least similar
candidate have the same number of same-coauthors with
the target pair. In another word, the most similar candidate
is significantly different from all the other candidates when
only considering the coauthor name features. Thus, 98%
target pairs holding 1.0 same-coauthor ratio means only
using the coauthor names can correctly assign 98% target
pairs. In fact, when considering the coauthor name feature,
any baselines including our model can easily achieve ap-
proximate 99% HR@1. Thus, for increasing the difficulty,
we ignore coauthor names on this dataset.

3. https://www.aminer.cn/whoiswho
4. https://www.aminer.cn/annotation
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(a) (b)

Fig. 7. (a) Distribution of the same-coauthor ratio on
KDD Cup dataset; (b) The effects of different attributes.

4.1.2 Comparison Methods

Matching Component. To evaluate the matching perfor-
mance, we compare feature engineering-based GBDT and
three embedding-based models:

GBDT: Is a widely used model to solve KDD Cup 2013
challenge-1 [7], [19], [48]. We train a GBDT model to
estimate a matching probability between each candidate and
the target pair. The extracted features for GBDT are shown
in Table 2. As the model can directly predict a label for
each candidate, it also be used for deciding to assign the
most matched candidate to the target pair if its label is 1.

Camel [46]: Is a representation-based model. Given a
triplet (〈p, a〉, c+, c−), it first represents 〈p, a〉 by p’s title,
and represents c+ and c− by their identities. Then it
calculates the matching scores for both (〈p, a〉, c+) and
(〈p, a〉, c−), and finally optimizes the difference between
their matching scores.

HetNetE [2]: Is similar as Camel except that 〈p, a〉 is
represented by all its attributes.

GML [47]: Is a representation-based model to identify
whether two papers are written by the same person through
optimizing a triplet loss. The model accepts the pre-trained
embeddings of all the tokens in a paper as input and output
an embedding for the paper. We represent a person by
averaging all his/her papers’ embeddings.

Decision Component. To evaluate the performance of the
decision component, we compare two strategies:

Threshold [8]: Picks the top matched person whose score
is lower than a threshold as NIL, where the threshold is
determined as the value when the best accuracy is obtained
on a validation set. We use the same matching model as
our proposed method to obtain the top matched persons.

Heuristic Loss [4]: Unifies the NIL decision and the
matching process by incorporating the costs of assigning
a paper to a wrong NIL person or assigning an unlinkable
paper to a wrong existing person into the loss function of
ranking the wrong person before the right person. NIL is
inserted as an additional candidate person for each paper.
The representations of p and c which are made in the same
way as GML, are concatenated as the input of a neural
network to produce their matching score. When c = NIL,
the representation of c is not included.

Variants of Our Model. We also compare dif-
ferent variants where CONNAr(BP), CONNAr(MFP),

TABLE 2
Features extracted for GBDT model. p: target paper, a:

target author in p, c: candidate person.

No. Feature description
1 The number of the papers of c
2 The number of the coauthors of a in p
3 The number of the coauthors of c
4 The number of the same coauthors between a and c
5 Ratio of the same coauthors between a and c in p’s coauthor names
6 Ratio of the same coauthors between a and c in c’s coauthor names
7 Frequency of a’s affiliation in c’s affiliations
8 Ratio of a’s affiliation in c’s affiliations
9 Cosine similarity between a’s affiliation and c’s affiliations

10 Jaccards similarity between a’s affiliation and c’s affiliations
11 Distinct number of venues of c
12 Frequency of p’s venue in c
13 Ratio of p’s venue in c
14 Cosine similarity between p’s venue and c’s venues
15 Jaccards similarity between p’s venue and c’s venues
16 Cosine similarity between p’s title and c’s titles
17 Jaccards similarity between p’s title and c’s titles
18 Distinct number of keywords in c
19 Frequency of p’s keywords of c
20 Ratio of p’s keywords in c
21 Cosine similarity between p’s keywords and c’s keywords
22 Jaccards similarity between p’s keywords and c’s keywords

CONNAr(MFMI) and CONNAr correspond to the variants
in Table 1. CrossEntropy modifies CONNAr by replacing
the triplet loss with the cross-entropy loss, which can be
directly used for deciding the assignments. CONNA trains
CONNAr plus a decision component once. CONNA+Fine-
tune jointly trains the two components in CONNA.

4.1.3 Evaluation Settings
For each dataset, we randomly sample 20% persons for
testing and divide the rest into training, which results in
45,711 authors for training and 11,427 authors for testing
on OAG-WhoIsWho dataset, and 2,991 authors for training
and 748 authors for testing on KDD Cup dataset. For each
author in both training and testing data, we first sort their
papers by the published year in ascending order. Then we
choose the latest 20% papers as the author’s unassigned
paper and leave 80% papers as the author profile.

We first evaluate the matching of the candidate persons
to the target pair, and further evaluate the decision of the
top matched person as the right person or NIL.

Matching Evaluation. For evaluating the matching per-
formance, we sample 10,000 target pairs from the training
data. Each target pair paired with its right person composes
a positive instance. We also sample 9 wrong persons paired
with each target paper to compose 9 negative instances. The
process results in 90,000 triplets for training. For testing, we
sample 2,000 target pairs from the test data, where each one
is associated with the right person and 19 wrong persons.

The wrong persons are sampled from the candidates.
We follow the name variant strategy in section 3.1 to
generate candidates on OAG-WhoIsWho. While for KDD
Cup, names are so different that no candidates can be found
by simply varying names. Instead, we calculate the Jaro-
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Winkler similarity between a candidate’s name and the
target author, and select the candidates whose scores are
larger than 0.5 as the wrong persons.

We use Hit Ratio at top k (HR@k) and mean reciprocal
rank (MRR) as the metrics for evaluating whether the right
person will be ranked at the top among all the candidates.
Since there is only one right person for each target pair,
HR@k measures the percentage of the candidate lists with
the right person ranked before top k. MRR measures the
average of reciprocal ranks of the right persons. Higher
HR@k and MRR indicate better performance.

Decision Evaluation. We construct the training data for
the decision component upon the output of the matching
component. Specifically, we also use the 10,000 positive
instances for the matching component as those for the
decision component. Then we extract the target pairs and
the corresponding top matched wrong persons to compose
the negative instances. For testing, in addition to the 2,000
target pairs and the corresponding candidates including
the right persons (i.e., positive sample (〈p, a〉, C) with
c∗ = c+), we extract extra 2,000 target pairs and the
corresponding candidates excluding the right persons (i.e.,
negative sample (〈p, a〉, C) with c∗ = NIL). Conveniently,
we remove the right person c+ from each positive sample
and create a negative sample by the remaining wrong
persons. We count the number of true positive (tp), false
negative (fn), true negative (tn) and false positive (fp)
samples and then calculate precision, recall and f1:

tp = |{c∗ = c+ and ĉ = c+ and ŷ = 1}|, (12)
fn = |{c∗ = c+ and ŷ = 0}|,
tn = |{c∗ = NIL and ŷ = 0}|,
fp = |{c∗ = NIL and ŷ = 1} ∪

{c∗ = c+ and ĉ 6= c+ and ŷ = 1}|

where tp is the number of the positive samples, with the
right persons ranked at the first (i.e., ĉ = c+) and also
predicted as the right persons (i.e., ŷ = 1). On the contrary,
fn counts the positive samples with ŷ = 0. Notation tn
denotes the number of negative samples with the first
ranked persons predicted as the wrong persons (i.e., ŷ = 0),
while fp counts the negative samples with ŷ = 1 and also
counts the positive samples with the wrong persons ranked
at the first (i.e., ĉ 6= c+) but still predicted as the right
persons (i.e., ŷ = 1). Since we aim at assigning the target
pair to an existing right person and also assigning it to NIL
if there is no right person, we calculate precision and recall
for both the cases with c∗ = c+ and c∗ = NIL:

c∗ = c+ : Pre. =
tp

tp + fp
, Rec. =

tp
tp + fn

; (13)

c∗ = NIL : Pre. =
tn

tn + fn
, Rec. =

tn
tn + fp

.

TABLE 3
Performance of the matching results (%).

Model OAG-WhoIsWho KDD Cup

HR@1 HR@3 MRR HR@1 HR@3 MRR

Camel 41.20 62.00 55.00 44.62 67.19 59.44
HetNetE 46.00 67.00 60.24 51.06 77.44 66.41

GML 70.87 94.53 82.59 72.13 95.34 82.90
GBDT 87.30 98.10 92.71 84.18 92.09 89.59

CONNAr(BP) 86.20 96.40 92.20 91.12 95.72 93.73
CONNAr(MFP) 88.00 98.75 93.25 - - -

CONNAr(MFMI) 89.45 98.40 93.82 91.45 95.80 94.03

CONNA 90.45 98.30 94.46 92.10 96.35 94.66
CONNA+Fine-tune 91.10 98.45 94.86 92.60 96.71 94.95

4.1.4 Implementation Details
We divide the attributes of a paper into two fields: coau-
thor names and other attributes including title, abstract,
organizations and keywords, as coauthor names have no
literal or semantic overlaps with other attributes. We pre-
train an embedding for each author name and each word.
Specifically, we use Word2Vec to train an embedding for an
author name in the context of all the coauthors’ names in a
paper, and train an embedding for a word in the context of
all the other occurred words in title, keywords, venue and
affiliation. We set the dimension of the embedding as 100.
To enable matrix operation, for each paper or candidate
person, we restrict the maximal number of author names to
100, the maximal number of words to 500, and the maximal
number of papers published by each person to 100.

The hyper-parameters of the RBF kernel
functions are set the same as [43]. We use
11 RBF kernels, with the hyper-parameters
µ={1, 0.9, 0.7, 0.5, 0.3, 0.1,−0.1,−0.3,−0.5,−0.7,−0.9}
and σ={10−3, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}.

Function g in Eq.(7) is instantiated as a 3-layer MLP
followed by a ReLU function which transforms a similarity
embedding φ(〈p, a〉, c) into a 1-dimensional score. Function
h in Eq.(8) is also a 3-layer MLP which transforms a
φ(〈p, a〉, c) into 2-dimensional classification probabilities.

4.2 Performance Analysis

4.2.1 Matching Performance

Overall Matching Performance. Table 3 shows the
matching performance of the proposed model, the model
variants and the comparison methods on the two datasets
OAG-WhoIsWho and KDD Cup. In terms of HR@1, the
proposed CONNA+Fine-tune achieves 3.80% to 49.90%
improvement over all the baseline methods.

Camel, HetNetE and GML are all representation-based
deep learning models, which can capture the soft/semantic
matches, but they will dilute the effect of the exact matches
of tokens due to the global representations of the papers
and persons. Among the three models, HetNetE uses all
the attributes of a paper rather than the single title to
represent a paper, which achieves better performance than
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Fig. 8. Case study of multi-field effect.

Fig. 9. Case study of multi-instance effect.

Camel. Camel and HetNetE represent the candidate persons
only based on their identities. Thus they suffer from the
sparsity issue, i.e, the embeddings of the persons cannot
be trained accurately if they publish few papers. GML
avoids the sparsity issue through representing persons by
their published papers. However, it is difficult to directly
compare the embeddings of a long text (i.e, all the papers
of a candidate person) and a short text (i.e., a target paper).

In the name disambiguation problem, the exact matches
between tokens especially the matches between coauthor
names are more important than the soft matches, thus al-
though GBDT only captures the exact matches, it performs
better than the representation-based models. The proposed
interaction-based matching component in CONNA captures
both the exact and the soft matches through comparing
local representations of each token pairs instead of com-
paring the global representations of papers and persons.
Specifically, the kernel aggregation function used in the
matching component summarizes a frequency distribution
of the exact matches and different kinds of soft matches,
which can’t dilute the effect of extract matches by the
other soft matches. Thus, the proposed matching component
performs better than all the comparison methods.

Compared with CONNA, the performance of
CONNA+Fine-tune is further improved, as the decision
component gives additional feedbacks to supervise the
ranking of the matching component. The result indicates
that through jointly fine-tuning of the two components, the
errors of the matching component can be reduced.

Comparing the results on the two datasets, we can
see that the advantage of our model over the feature
engineering-based GBDT is much more significant on KDD
Cup (+8.42% in HR@1) than OAG-WhoIsWho (+3.80% in
HR@1). Since coauthor features are not used on the KDD
Cup, the results indicate that CONNA can better capture

the semantics of the attributes except coauthor names.

Multi-field Effect. We conduct an ablation study to
analyze the effects of different modeling strategies on the
matching component. Since only one field is used on the
KDD Cup dataset, we analyze the effect of multi-fields on
the OAG-WhoisWho dataset. From Table 3, we can see
that CONNAr(MFP) performs better than CONNAr(BP)
(improving 1.8% in terms of HR@1), which indicates that
it is necessary to build the interaction-based models for
different attributes separately and distinguish their effects.

We also investigate the effects of different fields by
removing coauthor names and other attributes respectively
based on the model CONNA. The experimental results
in Figure 7(b) show that removing either coauthor names
or other attributes performs significantly worse (-5.80%-
7.05%, HR@1) than CONNA, which indicates that both
coauthor names and other attributes impact the performance
obviously. What’s more, removing names is comparable
to removing other attributes, which indicates that coauthor
names are more important than all the other attributes on
the task of name disambiguation.

Multi-instance Effect. Table 3 also shows that on
OAG-WhoisWho, CONNAr(MFMI) performs better than
CONNAr(MFP) (+1.45% in terms of HR@1), which
demonstrates the strength of distinguishing different pa-
pers of a person. HR@1 of CONNAr(MFMI) is fur-
ther improved by 1.00% if we combine the profile
model CONNAr(MFP) and the multi-instance model
CONNAr(MFMI) as CONNA. The result indicates that
both the global similarity between the target paper and a
candidate’s whole profile, and the local similarities between
the target paper and each paper of a candidate take effects
on matching performance. The results on KDD Cup also
present the advantages of multi-instances.

Interpretability of the Matching Component. We present
some cases in Figure 8 and Figure 9 to demonstrate the
interpretability of the proposed matching component. From
Figure 8, we can see that although the number of the
matched tokens between the target paper and the positive
candidate person is less than that of the negative candidate
person, the matched coauthors are more important than the
matched words in titles and venues, because the attention
α learned by our model for the matched coauthors on the
positive candidate is 0.69, comparing with 0.31 learned for
the matched titles and venues. And the attention learned
on the negative candidate also emphasizes the matched
coauthors. CONNA distinguishes different fields’ effects
by the attention, thus it can correctly identify the positive
candidate, while the basic profile model CONNAr(BP)
wrongly returns the negative candidate as the most matched
candidate, as it treats the matches in all the fields equally.

In Figure 9, we present the affiliation of “Dan Chen” in
both the target paper and the positive candidate. It is shown
that a paper of the positive candidate has the same affiliation
with the target paper, and the corresponding attention β
learned by our model for the paper is 0.79, while the values
of β learned for other papers are much smaller than this
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TABLE 4
Performance of the decision results (%).

Model
OAG-WhoIsWho KDD Cup

Samples with c∗ = c+ Samples with c∗ = NIL Samples with c∗ = c+ Samples with c∗ = NIL

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

GBDT 82.87 72.40 77.28 75.39 85.04 79.98 83.64 71.64 77.17 75.20 85.98 80.23
Threshold 79.33 57.60 66.38 66.47 84.07 74.24 74.89 71.00 72.90 72.43 76.20 74.27

Heuristic Loss 71.79 78.40 74.95 76.21 69.20 72.54 85.14 69.60 76.59 74.29 87.85 80.50
CrossEntropy 79.42 82.33 80.85 81.66 78.67 80.14 89.60 82.79 86.06 86.15 88.05 87.09

CONNA 79.53 89.87 84.38 88.35 76.87 82.21 88.44 86.20 87.31 86.54 88.73 87.62
CONNA+Fine-tune 82.47 90.33 86.22 89.31 80.80 84.84 89.87 85.73 87.75 86.36 90.33 88.30

TABLE 5
Average time cost(ms) of assigning each target pair.

Model Feature Preparing Matching Decision

GBDT 183.34 - 3.61

CONNA 260.45 76.12 6.34

paper. CONNA distinguishes different papers’ effects, thus
it can correctly identify the positive candidate, while the
basic profile model CONNAr(BP) treats the matches in
all the papers equally, which dilutes the effects of similar
papers by the other irrelevant papers. The learned attentions
for different fields and different papers both demonstrates
the interpretability of the proposed matching component.

Matching Performance on Different Scenarios. We con-
duct additional experiments on the matching performance
of different baselines and CONNA with different same-
coauthor ratios on OAG-WhoIsWho dataset and present
the results in Figure 2. We can see that HR@1 of the
embedding-based models, i.e. Camel, HetNetE, GML and
CONNA drop more slightly (drops from 6.63% to 18.73%)
than feature-engineering based GBDT (drops more than
29.69%) when the same-coauthor ratio decreases from 1.0
to 0.1. This indicates that the embedding-based model can
better capture the semantic matches when the coauthor
features are week. Especially when the same-coauthor ratio
is less than 0.1, the performance gap between CONNA and
GBDT is significantly more than 16%. The result indicates
that CONNA is more suitable to tackle the hard cases, i.e.
the cases that are hardly predicted by similar coauthors.

4.2.2 Decision Performance
Table 4 shows the final decision performance of the pro-
posed model and the comparison methods. Comparing with
other methods, in terms of F1, the proposed joint model
CONNA+Fine-tune achieves 1.69%-19.84% improvement
on the samples with c∗ = c+ and 1.21%-14.03% improve-
ment on the samples with c∗ = NIL. We evaluate the results
on both of the samples as we aim at not only assigning the
target papers to the right persons if they exist, but also
assigning them to NIL if the right persons do not exist.
The problem in this paper is not merely a matching or a
classification decision problem, but can be solved by firstly

matching each candidate to the target paper p and then
deciding whether the top matched person is right or not.
Thus, we need to not only keep the relevant order within
each candidate list, but also globally distinguish all the
positive pairs from all the negative pairs.

GBDT and CrossEntropy only aim to optimize the global
positions of all the (〈p, a〉, c) pairs, but ignore the relative
order within each candidate list. Although the globally
predicted probabilities can be used to compare the candi-
dates of each target paper, the relative order is not directly
optimized, leading to a lot of mistakes in the final results.
Threshold can be viewed as a global optimization model,
but merely uses a heuristic threshold to distinguish different
complicated cases. Heuristic Loss incorporates the costs
related to NIL into the original loss of ranking the wrong
persons before the right persons, but it suffers from the
heuristically configured weights of different costs.

CONNA first estimates the matching probability of each
candidate to the target pair and then decides the top matched
candidate. This two-step strategy which is widely adopted
in entity linking [22], [27] is proved to be effective. Com-
pared with CONNA, the performance of CONNA+Fine-
tune is further improved, as some of the wrongly-predicted
instances are gradually represented better to generate accu-
rate similarity embeddings by the iteratively refined match-
ing component, which will finally increase the number of
rightly predicted instances. The result demonstrates that the
errors of the decision component can be reduced through
jointly fine-tuning of the two components.

Convergence Analysis. We plot the train/test loss of
the matching component and the decision component with
the increase of the joint training epochs. The results in
Figure 10 show that the performance of the two compo-
nents both decrease sharply at the beginning of the joint
training and then gradually change stable, which indicate
the convergence of CONNA+Fine-tune.

4.3 Online Deployment on AMiner

Table 5 presents the average time cost of assigning each
target paper by the proposed CONNA model and the
best baseline GBDT. We implement the experiments by
Tensorflow and run the code on an Enterprise Linux Server
with 40 Intel(R) Xeon(R) CPU cores (E5-2640 v4 @
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(a) Matching component. (b) Decision component.

Fig. 10. Convergence Analysis.

2.40GHz and 252G memory) and 1 NVIDIA Tesla V100
GPU core (32G memory). Since GBDT is a classification
model without the matching component, we only present
the cost of the decision process, which uses the label of
the top predicted candidate as the predictive result. From
Table 5, we can see that CONNA is about 1.83× slower
than GBDT, which is mainly determined by the feature
preparing process. Although CONNA performs much better
than GBDT on both the ranking and the decision per-
formance, from Figure 2, we can see for about 62.17%
easy samples, i.e., the target pairs with the same-coauthor
ratio larger than 0.9, the ranking performance of GBDT
is comparable to CONNA, where the ranking performance
directly determines the final decision performance of the
top-1 candidates. Thus, to improve the online assignment
efficiency meanwhile keeping the assignment performance,
for each target pair, if its same-coauthor ratio is larger than
0.9, we directly apply GBDT to perform paper assignment,
otherwise we apply CONNA to complete the task.

In addition, the online candidate selection is a little
different from the offline name variant strategy explained
in Section 3.1. To improve the recall of the online pre-
dicting as much as possible, we adopt ElasticSearch5 to
perform fuzzy search for similar candidates with each
target author. Compared with this online fuzzy strategy, the
offline candidate selection is more strict, as for annotating
high-quality name disambiguation dataset, the simple name
variant strategy can already produce enough challenging
candidates. However, the fuzzy strategy may result in too
many noisy candidates, which increase annotation efforts.

We develop a demo of disambiguation on the fly in
AMiner6, and show two screenshots of the demo in Fig-
ure 11. In the demo, users are allowed to search a paper by
its title, then select the expected paper and click one author
name to see the disambiguation results of the paper with the
current name. Under the selected paper, we present the most
matched candidates by the trained matching component
in CONNA on the left, and show the decision result of
the assigned person by the trained decision component
in CONNA on the right. Figure 11(a) shows a case with
c∗ = c+. We can see that our model can correctly match
“Jing Zhang” from Renmin University for the author “Jing
Zhang” in the paper “StructInf: Mining Structural Influence
from Social Streams” at the top and then decide the top

5. https://www.elastic.co
6. http://na-demo.aminer.cn/

(a) A c∗ = c+ case.

(b) A c∗ = NIL case.

Fig. 11. A demo of disambiguation on the fly in AMiner.

matched one as the final assigned person. Figure 11(b)
shows a case with c∗ = NIL. Since “Bo Chen” of the
paper “MEgo2Vec: Embedding Matched Ego Networks for
User Alignment Across Social Networks” is a postgraduate
student whose profile has not been established by AMiner,
none of the existing “Bo Chen” should be assigned to
the paper. Our model correctly assigns NIL to this case.
Besides, since errors are still inevitable, we allow the users
to provide feedback to our decision results. Specifically,
users are allowed to directly “submit” the result if they
agree with it, otherwise, they can choose another right
person from the top matched persons. The feedback can
be simply regarded as new training instances to update the
decision performance at each step of the joint training.

5 RELATED WORK

This paper is related to the problems of name disambigua-
tion from scratch, author identification and entity linking.

Name Disambiguation from Scratch. Much effort has
been made to disambiguate names from scratch defined as:
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given a set of papers written by the authors with similar
name, it targets at partitioning all the papers into several
disjoint clusters, with each of them corresponds to a real
person. Existing work firstly represent papers by traditional
feature engineering methods [3], [13], [35], [40], [42] or
embedding models [26], [41], [45], [47] and then adopt
a clustering algorithm such as hierarchical agglomerative
clustering [3], [26], [41], [45], [47], K-means [40], DB-
SCAN [13] or semi-supervised clustering [21] to partition
these papers. Embedding models further include graph
auto-encoder [47], heterogeneous GCN [26] and adversarial
representation learning [41]. Continuous name disambigua-
tion is formalized differently from the above problem, thus
it can not be solved by the above methods.

Author Identification. Several works devote to anony-
mous author identification for a paper, which assume the
authors of the target paper are unknown in a double-blind
setting. For example, Chen et al. [2] and Zhang et al. [46]
both optimize the difference between the right and the
wrong authors. However, their models cannot be applied to
unseen authors in the training set, as they only consider the
identities of the authors. While we model authors’ profiles,
which do not depend on authors’ identities. KDD Cup 2013
held an author identification challenge to solve the similar
problem. However, the situation that no right person exists
was not considered and all the participations devoted to
feature-engineering methods [7], [48].

Entity Linking. Entity linking aims at linking the mentions
extracted from the unstructured text to the right entities in a
knowledge graph [31]. Feature-based [17] or neural mod-
els such as skip-gram [44], autoencoder [11], CNN [33],
LSTM [16] are proposed to calculate the similarity between
the context of a mention and a candidate entity. The NIL
problem is widely studied in entity linking. The main
solutions usually include the NIL threshold methods [8],
[32] predicting the mention as unlinkable if the score of
the top ranked entity is smaller than a NIL threshold,
the classification methods [22], [27] which predict the
unlinkable mentions by a binary classifier, and the unified
models incorporating unlinkable mention prediction process
into entity matching process [4], [10]. Different from above,
we jointly train the NIL decision model and the candidate
matching model to boost both of their performance.

6 CONCLUSION
This paper presents the first attempt to formalize and
solve the problem of name disambiguation on the fly by
considering different cases of assignments, in particular
when a paper cannot be assigned to any existing persons in
the system. We propose a novel joint model that consists of
a matching component and a decision component, where a
multi-field multi-instance interaction-based model is trained
to match the candidates to each target paper, and then a
classification decision model is trained to decide whether
to assign the top matched candidate to the target paper
or not. Through reinforcement joint fine-tuning, the two
components can bootstrap each other and self-correct some

of their errors. The experimental results on the recent
largest dataset for name disambiguation demonstrate that
the proposed model performs significantly better than state-
of-the-art baseline methods. The model has already been
deployed on AMiner to disambiguate the online papers.
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